
Best Practice Document

Produced by the RENATER-led working group on IPv6 Services

Authors: J. Benoit (Université de Strasbourg/GIP RENATER),
S. Muyal (GIP RENATER), C. Palanché (Université de Strasbourg/
GIP RENATER), P. Wender (INSA Rouen/GIP RENATER)

November 2013

Deployment of Services on IPv6

NA3 Best Practice Document:
Deployment of Services on IPv6

© GIP RENATER 2013 © TERENA 2013. All rights reserved.

Document No: GN3plus-NA3-T2-R3.2
Version / date: V1.0, 27 November 2013
Original language : French
Original title: “Déployer des services en IPv6”
Original version / date: V1.0, 27 November 2013
Contact: cbp@listes.renater.fr

RENATER bears responsibility for the content of this document. The work has been carried out by a RENATER-led working
group on IPv6 as part of a joint-venture project within the HE sector in France.

Parts of the report may be freely copied, unaltered, provided that the original source is acknowledged and copyright
preserved.

The research leading to these results has received funding from the European Community's Seventh Framework
Programme (FP7/2007-2013) under grant agreement n° 605243, relating to the project 'Multi-Gigabit European Research
and Education Network and Associated Services (GN3plus)'.

NA3 Best Practice Document:
Deployment of Services on IPv6 iii

Table of Contents

Table of Figures iv

Executive Summary 1

1 General recommendations 2

1.1 Stage 1: Organisation of deployment 2

1.1.1 Approaches 2

1.1.2 Deployment order 3

1.1.3 Priority for web applications 3

1.1.4 Applications (web or non-web) manipulating IP addresses 3

1.2 Stage 2: training of system administrators on IPv6 3

1.3 Stage 3: activating IPv6 on the server network 4

1.3.1 Server network addressing plan 4

1.4 Stage 4: monitoring the IPv6 address 5

1.5 Stage 5: tests and validation 5

1.6 Stage 6: activation 5

1.7 Stage 7: publication of the service on DNS 5

2 Implementation of the IPv4/IPv6 dual-stack 7

3 Mail 9

3.1 Configuration of main MTAs on IPv6 9

3.1.1 Sendmail 9

3.1.2 Postfix 9

3.2 Impact of IPv6 activation 10

4 Web 11

4.1 Architecture 11

4.1.1 Architecture without redundancy 11

4.1.2 Proxy and load-balancer 11

4.2 Examples 12

4.2.1 Architecture without redundancy 12

4.2.2 Proxy and IPv6/IPv4 translation 13

4.2.3 Redundancy 15

NA3 Best Practice Document:
Deployment of Services on IPv6 iv

5 Security 16

5.1 Filtering 16

5.1.1 Default policy 16

5.1.2 Rules necessary for IPv6 to work 16

5.2 ICMPv6 17

5.3 Multicast 18

5.4 Extensions 18

5.5 Service filtering 18

References 20

Glossary 21

Table of Figures

Figure 2.1: IPv4 and IPv6 sockets 7

Figure 2.2: Single IPv6 socket (IPv4 “mapped” to IPv6) 8

Figure 3.1: IPv6/IPv4 translation with OpenBSD 14

NA3 Best Practice Document:
Deployment of Services on IPv6 1

Executive Summary

There are already numerous best practice documents about the deployment of IPv6 on both client workstations

and a network infrastructure, however, the deployment of IPv6 on servers and services has rarely been

covered. This document is aimed at overcoming this deficiency. The scope of best practice discussed here

includes network services (web, mail, DNS) and the servers on which these services run.

This document is aimed at system and network administrators. Topics such as workstation configuration

strategy (with SLAAC, DHCPv6, etc.) or configuration of interconnections between routers on IPv6 is not

covered. IPv6 connectivity must already be available on the core network.

More precisely, these recommendations apply to the deployment of services on IPv6 on Unix servers for a

service that already exists on IPv4. The dual-stack protocol approach (IPv4 – IPv6) on the server is preferred.

Initially, some general advice is given about the deployment of services on IPv6: preparation, training,

organisation, tests and implementation. Different cases (messaging, web and load sharing) are then studied in

detail:

Finally, advice on security is given.

NA3 Best Practice Document:
Deployment of Services on IPv6 2

1 General recommendations

The approach to the implementation of services on IPv6 can be divided into several stages:

 Definition of services to be deployed on IPv6, with impact analysis.

 Training of system administrators.

 Setting up IPv6 connectivity on the server network.

 Pre-deployment monitoring of the service on IPv6.

 Tests to ensure the service is functioning correctly.

 Activation of IPv6.

 Publication of the service address on DNS.

1.1 Stage 1: Organisation of deployment

This stage allows the deployment to be prepared by precisely defining its scope. It requires answers to the

following questions:

 Which service will be deployed on IPv6?

 Which servers is it running on?

 Which other services does it depend on? (example of dependence: a web service depends on a

database or a directory to operate)

 Which other services depend on this service? (e.g.: a web service used by other applications).

1.1.1 Approaches

Deployment of IPv6 is implemented for a service that already exists on IPv4. There are three possible

approaches:

 Service on IPv6 running on a dedicated server,

 A proxy application server playing the role of translator: the client connects to it on IPv6 and the proxy

will relay the traffic on IPv4 to the service which remains unchanged,

 The service running on the same server, which has a dual-stack network, IPv4 and IPv6.

General recommendations

NA3 Best Practice Document:
Deployment of Services on IPv6 3

The first approach is not recommended as it complicates management of the service: by doubling the servers,

maintenance is increased.

The second approach is possible if the service cannot run natively on IPv6. It allows access to the service on

IPv6 without modifying it, but transfers some of the complexity to the proxy (session management).

The third approach is the most common in the context of a campus network. This is the approach mainly

studied in this document.

1.1.2 Deployment order

When IPv6 is activated on a server, this impacts all services hosted on this server.

It is best to organise the deployment progressively, server by server, taking dependencies into account. The

servers with the fewest dependencies and services should be picked first. The dependencies are not blocking:

the activation of IPv6 on a server for access to the services it hosts does not prevent the use of IPv4 to its

dependencies. For example, if a database server doesn’t work on IPv6, a web server deployed on IPv6 can

connect to the database on IPv4.

1.1.3 Priority for web applications

It is strongly recommended to start with web services:

 The majority of applications rely on web servers that support IPv6 (Apache [1], Lighttpd [2], Nginx [3],

etc.),

 The majority of web applications do not manipulate IP addresses: the front-end web server is most

often responsible for IPv6 management.

1.1.4 Applications (web or non-web) manipulating IP addresses

For an application using IP addresses, its compatibility with IPv6 must be checked. There are test suites for

validating its correct operation, for example IPv6CARE [4]. In addition, many languages and their environments

(such as C, PHP, Java, Perl, Ruby, Python, etc.) offer a good level of IPv6 support.

1.2 Stage 2: training of system administrators on IPv6

This first stage is indispensable for those responsible for server administration and for services to run services

on IPv6.

It is recommended to start training several months before deploying IPv6. The training must be essentially

practical and the training plan must include at least the following points:

General recommendations

NA3 Best Practice Document:
Deployment of Services on IPv6 4

 Addressing and routing (local and global address scope, etc.), with, in particular, an example of an

addressing plan for server networks.

 Differences between IPv4 and IPv6.

 Description of the protocols associated with IPv6 (NDP, ICMP6, etc.).

 Security.

 Configuration of servers on a test network (devoting sufficient time to hands-on training in a lab with real

or virtual equipment).

 Deployment strategy (in different stages).

1.3 Stage 3: activating IPv6 on the server network

It is assumed that IPv6 is already active on the core network and that external connectivity is already

established and that IPv6 is not delivered on a separate VLAN. IPv6 connectivity must be set up on the server

production network.

Important! Activation of IPv6 on the server network must be monitored:

 It is not necessary to activate router-advertisements on the server network: there is no need for either

prefix or router advertisements.

 De-activation of auto-configuration of IPv6 addresses on the servers is recommended.

 The gateway is also statically configured by default.

 It is recommended that the IPv6 filtering policy on the network periphery be checked for consistency

with the IPv4 policy. For example, if SSH access is blocked for all servers on IPv4, it must also be

blocked on IPv6.

Reminder: all servers on which IPv6 activation is desired must have an IPv4 and IPv6 dual-stack.

1.3.1 Server network addressing plan

In setting up a server addressing plan, attention must be paid to the following points:

 Servers must only have static IPv6 addresses.

 The numbering method must remain simple. For example, make the last byte of the IPv6 address the

same as the IPv4 address: if the server IPv4 address is 192.0.2.54 on the 192.0.2.0/24 network, then

the IPv6 address will be: 2001:db8::54 on the 2001:db8::/64 network. When the last byte is insufficiently

specific (for example for a prefix on /23 or smaller), the last two or three bytes of the IPv4 addresses

can be transposed to the IPv6 address. For example, 192.0.2.1/23 becomes 2001 :db8 ::2 :1/64.

General recommendations

NA3 Best Practice Document:
Deployment of Services on IPv6 5

1.4 Stage 4: monitoring the IPv6 address

The operation of the service on IPv6 must be visible before the declaration in the DNS. It is necessary to both

test the IPv6 connectivity and supervise the service on IPv6. It is appropriate to bring all the tests related to

IPv6 services together into a dashboard dedicated to IPv6 monitoring.

For example, in Nagios [5], it is recommended to add an additional “host” for IPv6 (mywebserver-v6) to make

the state of the server explicit.

Important: a check must be made for compatibility with IPv6 (for example, Nagios plugins do not all

support IPv6).

If the test supports IPv4 and IPv6, it is necessary to verify that the proper functioning status reported by the test

explicitly gives the state of service on IPv6.

For example, for some plugins, it is possible to force the test on IPv6:

 check_http -H www.example.com -6

1.5 Stage 5: tests and validation

As far as possible, IPv6 activation must be validated on a pre-production platform:

This platform must be a copy of the target platform in conditions as close as possible to those of the production

network. If the platform consists of several servers (frontal load-balancing, back-end servers and database

servers), the entire chain must be tested.

1.6 Stage 6: activation

Activate the static IPv6 address on the production server. Verify via monitoring that the service is operational on

IPv6.

1.7 Stage 7: publication of the service on DNS

Note: it is not necessary to declare the IPv6 address of a server before ascertaining that the services run on

IPV6.

Once monitoring indicates that the service is operational, the IPv6 address of the server can now be declared

(AAAA record) and its reverse record (PTR) on DNS.

General recommendations

NA3 Best Practice Document:
Deployment of Services on IPv6 6

The operation of the service must now be tested by name. The most thorough test (i.e. guaranteeing that IPv6

is used) is done with a tool like telnet or netcat [6] by specifying the option “-6”. For example:

nc -v -6 monserveur.exemple.com 80

Once the address is published on DNS, it is possible to modify the server declaration via monitoring to perform

an IPv4 and IPv6 test, if the plugin allows this.

NA3 Best Practice Document:
Deployment of Services on IPv6 7

2 Implementation of the IPv4/IPv6 dual-stack

Taking the web service as an example, two methods are possible:

 The web server listens on IPv4 and IPv6 sockets at the same time.

 The web server only listens on an IPv6 socket and IPv6 addresses of the IPv4-mapped

(::FFFF:ADDR_IPv4) type are used.

First case – IPv4 and IPv6 sockets: The web server listens on an IPv4 socket as well as on an IPv6 socket

on the configured ports (by default, ports 80 and 443).

Figure 2.1: IPv4 and IPv6 sockets

Second case – Socket IPv6: the other possible architecture is that a single TCP socket is open with use of

IPv6 addresses of the “IPv4-mapped”-type. The web service listens to V4 and v6 requests only via the IPv6

socket (see RFC 3493, “Basic Socket Interface Extensions for IPv6”).

For example: [::ffff:192.0.2.128] for the address IPV4 [192.0.2.128].

Implementation of the IPv4/IPv6 dual-stack

NA3 Best Practice Document:
Deployment of Services on IPv6 8

Source: Rino Nucara, GARR, EuChinaGRID IPv6 Tutorial [7]

Figure 2.2: Single IPv6 socket (IPv4 “mapped” to IPv6)

In the majority of Linux distributions, the second case is used. A single socket functions on IPv4 and IPv6 at the

same time. Note that this will not work is if the address associated with the socket is not specified. This socket

is represented as an IPv6 socket in the result of the netstat command:

tcp6 0 0 :::80 :::* LISTEN 24035/nginx

NA3 Best Practice Document:
Deployment of Services on IPv6 9

3 Mail

3.1 Configuration of main MTAs on IPv6

3.1.1 Sendmail

In the mc configuration system, define the address family using the directive DAEMON_OPTIONS

(corresponding to the option DaemonPortOptions in sendmail.cf [8]):

DAEMON_OPTIONS(`Family=inet6, Name=MTA, Modifier=O')dnl

The “O” modifier allow sendmail to run even if IPv6 is still not active.

Note: under Linux, by default, a single socket is created for both IPv4 and IPv6.

This option is sufficient and cannot co-exist with the option “Family=inet” for IPv4.

Under *BSD, both options must be set.

The following command must be used to verify that sendmail is indeed listening on IPv6:

lsof -i 6TCP:25 -n

The connection on the SMTP port must then be tested, using the following command:

openssl s_client -starttls smtp -connect @IPv6_server:587

3.1.2 Postfix

IPv6 is activated by default in Postfix, starting from version 2.9. Note that for earlier versions, the following must

be specified:

Mail

NA3 Best Practice Document:
Deployment of Services on IPv6 10

inet_protocols = all

in the file main.conf [9].

3.2 Impact of IPv6 activation

Messaging relay mechanisms are the same on IPv4 and IPv6. There is therefore no specific architecture to be

implemented. However, the activation of IPv6 has an impact on the routing of messages to other sites. Be

aware that many messaging servers (MTA) are currently badly configured:

 They lack external IPv6 connectivity.

 They only have one local IPv6 address.

 Even so, they perform a DNS resolution by requesting the server IPv6 address from the client

messaging server.

The external server is consequently unable to send mail.

The messaging administrators of the sites concerned must be warned, indicating that they should activate IPv6

on their site or de-activate IPv6 on the server or the messaging service.

This problem is often linked to the default configuration of the variable “inet_protocols” of the postfix MTA. The

default configuration contains:

inet_protocols = all

The administrator must be told to force this value to “ipv4” if they are unable to bring about correct functioning

of IPv6 immediately.

NA3 Best Practice Document:
Deployment of Services on IPv6 11

4 Web

4.1 Architecture

4.1.1 Architecture without redundancy

In a classic web server architecture, a few configuration changes are generally sufficient to “v6fy” the server.

4.1.2 Proxy and load-balancer

In order to make the web server architecture more robust, proxies and load-balancing mechanisms are often

used. In the majority of cases, it is sufficient that these mechanisms support IPv6 in order to offer a web service

that is accessible on IPv6. The ‘backend’ part does not necessarily need to be “v6fied”.

There are several ways of implementing load-balancing:

 at the network level: VRRP or CARP mechanisms can send packets to a set of web servers. These

mechanisms do not take the state of the web service into account. If the network interface is active, the

mechanism will continue to send packets to the server in question. A probe to verify the state of the

service must be set up.

 at the DNS level: Round-robin DNS mechanisms can be used. However, these mechanisms do not

take the status of the web service into account.

 at the application level: The application load-sharing mechanisms have the advantage of taking the

status of the web service into account.

Web

NA3 Best Practice Document:
Deployment of Services on IPv6 12

4.2 Examples

4.2.1 Architecture without redundancy

4.2.1.1 Apache

Apache configuration for host:

If the IPv6 stack is already configured on the server, the apache server can respond to IPv6 requests by default,

by listening to all of the server’s IP addresses. The configuration is in the ports.conf file for a Linux Debian

distribution:

Listen 80

<IfModule mod_ssl.c>

Listen 443

</IfModule>

If you wish to listen to specific IPv4 and IPv6 addresses, the syntax is as follows:

Listen 192.168.0.1:80

Listen [2001:db8::1]:80

To verify that the server is listening on ports 80 on IPv4 and IPv6, under Linux the following commands verify

the list of open ports on IPv4 and IPv6 on TCP port 80:

netstat -ant

lsof -ni tcp:80

Apache configuration for SSL :

For the apache server to listen to the default SSL web port (443), the ports.conf

file must contain the following lines:

<IfModule mod_ssl.c>

Listen 443

</IfModule>

Then the different virtual hosts need to be associated in the configuration.

<VirtualHost *:80>

 ServerName web_server_name

 DocumentRoot /directory/

</VirtualHost>

A second example with a virtual host listening on the IPv4 and IPv6 addresses 192.168.0.1 and 2001:db8::1:

<VirtualHost 192.168.0.1:80 [2001:db8::1]:80>

 ServerName web_server_name

 DocumentRoot /directory/

</VirtualHost>

Web

NA3 Best Practice Document:
Deployment of Services on IPv6 13

4.2.1.2 Nginx

You only need to add the following directive to nginx configuration in the server section. (Note: in systems that

create only one socket for IPv4 and IPv6, e.g. Linux, the following configuration will also work for IPv4):

server {

listen [::]:80

…

}

server {

 listen [::]:443

…

}

4.2.2 Proxy and IPv6/IPv4 translation

4.2.2.1 Apache

The Apache module “mod_proxy” [10] allows a reverse-proxy to be set up.

This reverse-proxy listens on an IPv6 address, re-sending the requests to the internal site on IPv4 only.

For example, the site “internal.appliv4.example.com” does not support IPv6. The name “www.example.com” is

declared on the DNS associated with the address IPv6 “2001:db8::1”

The Apache configuration is as follows:

<VirtualHost [2001:db8::1]:80>

 ServerName www.example.com

 ProxyRequests Off

 ProxyPass / http://internal.appliv4.example.com/

 ProxyPassReverse / http://internal.appliv4.example.com/

 ProxyPreserveHost On

</VirtualHost>

4.2.2.2 Nginx

Nginx allows a reverse-proxy (http/https) to be set up to listen on an IPv6 address, re-sending the requests to

the servers on IPv6 or IPv4. To activate this service, it is necessary to:

Define the list of internal servers using the upstream directive:

upstream my_service {

 server internal.appliv4.example.com

}

Web

NA3 Best Practice Document:
Deployment of Services on IPv6 14

 Activate redirection to the internal servers with the proxy_pass directive:

server {

 listen [::]:80 ;

 server_name www.example.com;

 location / {

 proxy_pass http://my_service;

 }

}

4.2.2.3 Translation with OpenBSD

Figure 4.1: IPv6/IPv4 translation with OpenBSD

On OpenBSD [11] PF [12] allows family address translation, in particular from IPv6 to IPv4:

 The server IPv4 address is incorporated at the end of the IPv6 address: 2001:db8:3:4::c0a8:0101 for

192.168.1.1.

 The server IPv6 address must be declared on an external interface.

 Under the translation rule, it is necessary to specify the IPv4 source address to which the IPv6 address

will be rewritten (i.e. the address declared on the internal interface of the firewall).

Example of the rule to be added in /etc/pf.conf:

 pass in on bnx0 inet6 af-to inet from 192.168.1.1

Web

NA3 Best Practice Document:
Deployment of Services on IPv6 15

4.2.3 Redundancy

On Linux, the Keepalived tool implements the VRRP protocol for IPv6 and is based on IPVS [13], which also

supports IPv6.

On OpenBSD, CARP, PF, PFSYNC and Relayd are compatible with IPv6. A redundant load-balancing

architecture can be built natively.

NA3 Best Practice Document:
Deployment of Services on IPv6 16

5 Security

In principle, the same security policy must be applied to the services on IPv4 and on IPv6. There must be a

packet-filtering mechanism on IPv6 before activating IPv6 on the servers. The principle of authorising an IP

source address on IPv4 no longer works on IPv6. It is necessary to authorise entire networks and rely on

application security (authentication, authorisation).

5.1 Filtering

The filtering policy applied to the server (and not to an external filtering device) is divided into three parts:

 A default policy that prohibits all traffic.

 Rules that allow the functioning of IPv6.

 Specific rules for the functioning of the service.

5.1.1 Default policy

All traffic is prohibited by default

Example for Netfilter/Linux [14]:

ip6tables -P INPUT DROP

Example with PF/*BSD:

block inet6 all

5.1.2 Rules necessary for IPv6 to work

To guarantee that IPv6 works on the protocol level, when setting up a filtering policy, attention must be paid to

the following points in particular:

 ICMPv6.

Security

NA3 Best Practice Document:
Deployment of Services on IPv6 17

 Multicast.

 Certain extensions.

5.2 ICMPv6

Internet Control Message Protocol for IPv6 (ICMPv6) is mandatory to the proper operation of IPv6. This

protocol must never be blocked completely, otherwise connectivity will not work. For example, the Neighbor

Discovery protocol is based on ICMPv6. Similarly, the ICMP message “Packet Too Big” is mandatory to the

proper operation of the MTU’s discovery algorithm (Path MTU discovery). A minimum subset of ICMPv6

documented in RFC 4890 should therefore be authorised [15]. ICMPv6 packets of the “router advertisement”

type are voluntarily blocked in the context of a server network where it is recommended that RA be deactivated

on the routers.

Example with Netfilter/Linux:

ip6tables -A INPUT -p icmpv6 --icmpv6-type echo-request -j ACCEPT

ip6tables -A INPUT -p icmpv6 --icmpv6-type echo-reply -j ACCEPT

ip6tables -A INPUT -p icmpv6 --icmpv6-type address-unreachable -j ACCEPT

ip6tables -A INPUT -p icmpv6 --icmpv6-type port-unreachable -j ACCEPT

ip6tables -A INPUT -p icmpv6 --icmpv6-type packet-too-big -j ACCEPT

ip6tables -A INPUT -p icmpv6 --icmpv6-type time-exceeded -j ACCEPT

ip6tables -A INPUT -p icmpv6 --icmpv6-type parameter-problem -j ACCEPT

ip6tables -A INPUT -p icmpv6 --icmpv6-type neighbor-advertisement -j ACCEPT

ip6tables -A INPUT -p icmpv6 --icmpv6-type neighbor-solicitation -j ACCEPT

MLD Query

ip6tables -A INPUT -p icmpv6 --icmpv6-type 130 -j ACCEPT

ip6tables -A INPUT -p icmpv6 -j DROP

Example with PF/*BSD:

pass in inet6 proto icmp6 all icmp6-type echoreq

pass in inet6 proto icmp6 all icmp6-type echorep

pass in inet6 proto icmp6 all icmp6-type toobig

pass in inet6 proto icmp6 all icmp6-type timex

pass in inet6 proto icmp6 all icmp6-type paramprob

pass in inet6 proto icmp6 all icmp6-type unreach code addr-unr

pass in inet6 proto icmp6 all icmp6-type unreach code port-unr

pass in inet6 proto icmp6 all icmp6-type neighbrsol

pass in inet6 proto icmp6 all icmp6-type neighbradv

MLD query

pass in inet6 proto icmp6 all icmp6-type listqry

Security

NA3 Best Practice Document:
Deployment of Services on IPv6 18

5.3 Multicast

The local multicast should not be filtered, as it is required for the Neighbor discovery protocol: it is based on the

solicited-node multicast address. The entire ff02::/16 prefix must be authorised as an IP destination address.

Example with Netfilter/Linux:

ip6tables -A INPUT --destination ff02::/16 -j ACCEPT

Example with PF/*BSD:

pass in inet6 from ff02::/16

5.4 Extensions

In an IPv6 packet, the “Next-Header” header field allows extensions to be inserted between the IPv6 header

and the protocol transporting the payload (TCP, UDP, ICMPv6 etc.).

These extensions are chainable.

It is difficult to set up a general policy for the filtering of extensions.

Some extensions are mandatory, e.g. the Hop by Hop extension, used by MLD. MLD is based on ICMPv6 and

is necessary for Multicast to work. However, this extension is only useful to routers.

Other extensions can be attack vectors if they have not been correctly configured on the host. For example,

fragmentation and routing header extension [16] have been used in the past to launch attacks on servers

following vulnerabilities in the implementation of the IPv6 protocol stack. It is possible to block fragmentation

completely (although without blocking ICMP signalling).

5.5 Service filtering

The filtering is identical to that in IPv4.

Linux/Netfilter example:

web

ip6tables -A INPUT -p tcp -m multiport --dports 80,443 -j ACCEPT

dns

ip6tables -A INPUT -p tcp --dport 53 -j ACCEPT

ip6tables -A INPUT -p udp --dport 53 -j ACCEPT

ipsec

ip6tables -A INPUT -m ah -j ACCEPT

ip6tables -A INPUT -p esp -j ACCEPT

ip6tables -A INPUT -p udp --dport 500 -j ACCEPT

Security

NA3 Best Practice Document:
Deployment of Services on IPv6 19

pf/*BSD example:

web

pass inet6 proto tcp from any to any port { 80 443 }

dns

pass inet6 proto { udp tcp } from any to any port 53

VPN IPSEC

pass inet6 proto {ah esp} from any to any

pass inet6 proto udp from any to any port 500

NA3 Best Practice Document:
Deployment of Services on IPv6 20

References

[1] http://httpd.apache.org/

[2] http://www.lighttpd.net/

[3] http://nginx.org

[4] http://sourceforge.net/projects/ipv6-care/

[5] http://www.nagios.org/

[6] http://nc110.sourceforge.net/

[7] http://www.euchinagrid.org/IPv6/IPv6_presentation/Introduction_to_IPv6_programming.pdf

[8] http://www.sendmail.org/~ca/email/doc8.12/op.html

[9] http://www.postfix.org/postconf.5.html

[10] http://httpd.apache.org/docs/2.2/mod/mod_proxy.html

[11] http://openbsd.org/

[12] http://www.openbsd.org/faq/pf/

[13] http://www.linuxvirtualserver.org/

[14] http://www.netfilter.org/

[15] http://www.ietf.org/rfc/rfc4890.txt

[16] http://www.ietf.org/rfc/rfc5095.txt

http://httpd.apache.org/
http://www.lighttpd.net/
http://nginx.org/
http://sourceforge.net/projects/ipv6-care/
http://www.nagios.org/
http://nc110.sourceforge.net/
http://www.euchinagrid.org/IPv6/IPv6_presentation/Introduction_to_IPv6_programming.pdf
http://www.sendmail.org/~ca/email/doc8.12/op.html
http://www.postfix.org/postconf.5.html
http://httpd.apache.org/docs/2.2/mod/mod_proxy.html
http://openbsd.org/
http://www.openbsd.org/faq/pf/
http://www.linuxvirtualserver.org/
http://www.netfilter.org/
http://www.ietf.org/rfc/rfc4890.txt
http://www.ietf.org/rfc/rfc5095.txt

NA3 Best Practice Document:
Deployment of Services on IPv6 21

Glossary

DNSv6 Domain Name System extensions to support IPv6 (RFC3596)

ICMPv6 Internet Control Message Protocol for IPv6 (RFC4884)

NA Neighbor Advertisement

ND Neighbor Discovery for IPv6 (RFC4861)

NS Neighbor Solicitation

PMDv6 Path MTU Discovery for IPv6 (RFC1981)

RA Router Advertisement

RS Router Solicitation

SLAAC Stateless Address Autoconfiguration (RFC4862)

Complete BPDs available at http://services.geant.net/cbp/Pages/Home.aspx

campus-bp-announcements@terena.org

