

Produced by the Portuguese BPD Working Group (DBPC 302)

Author: Carlos Friacas (FCCN) Contributors: Rui Ribeiro (ISCTE Business School), Jorge Matias (IST, Lisbon), Pedro Ribeiro (IPLNet), Nuno Rodrigues (IPB), João Viegas (IPLNet)

November 2015

© FCT/FCCN, 2015 © GÉANT, 2015. All rights reserved.

GN3-DBPC-302
Version 1.2; November 2015
English
"IPv6 Deployments within RCTS"
Version 1.0; September 2014
cfriacas@fccn.pt

FCT-FCCN is responsible for the contents of this document. The document was developed by a FCT-FCCN-led working group.

Parts of the report may be freely copied, unaltered, provided that the original source is acknowledged and copyright preserved.

The research leading to these results has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 691567 (GN4-1).

Table of Contents

Execut	tive Sun	nmary	1
1	Introduction		2
2	Basic I	Internet Services	3
	2.1	DNS	3
	2.2	Web	5
	2.3	E-mail	6
3	Other	Services	9
	3.1	Network Time Protocol (NTP)	9
	3.2	Mirrors (FTP, HTTP)	9
	3.3	Filesender	10
	3.4	Other Services	10
4	Availa	ble IPv6 Infrastructures	11
	4.1	IPv6-Only Testbed	11
	4.2	Cisco 6DEPLOY Lisbon Training Lab	11
5	User c	connectivity	12
6	IPv6 deployment principles		15
7	Conclusion		16
Appendix A IPv6 connectivity status		17	
Refere	ences	20	
Glossa	iry	21	

Table of Figures

Figure 3.1: FEUP's measurement of IPv4 and IPv6 utilization	9
Figure 3.2: Web interface for Filesender	10
Figure 5.1: IPv6 traffic within RCTS – weeks 46 to 50 of 2014	12
Figure 5.2: IPv6 traffic within RCTS – from September 2012	13
Figure 5.3: IPv4 versus IPv6 traffic within RCTS during a 12-month period	13

Table of Tables

Table 2.1: IPv6-enabled nameservers grouped by organisation	5
Table 2.2: IPv6-enabled main organisation webservers	6
Table 2.3: MTAs from RCTS-connected organisations	8
Table 2.4: IP addresses for certain Mail Delivery Agents	8
Table A.1: RCTS members and their IPv6 connectivity status	19

Executive Summary

This document provides a view about IPv6 deployment at RCTS, the Science Technology & Society Network, which is the Portuguese National Research and Education Network (NREN), managed by FCCN, as a unit of FCT, I.P.

Efforts to deploy IPv6 in the Portuguese R&E network are several years old, but there is clearly still a lot of work to be done to achieve full deployment. IPv6 traffic levels at RCTS when compared to IPv4's levels are beginning to be interesting. On a daily-basis, IPv6 accounts for 5% of RCTS' total traffic in average, with occasional peaks of up to 15%.

RCTS (as of December 2014) has 77 members, of which only 34 have an enabled IPv6 gateway. RCTS connects 42 higher education organisations (Universities and Polytechnic Institutes), of which 24 have IPv6 connectivity (57%). The other 10 RCTS members who also have IPv6 represent 29% coverage in a universe of 35 organisations (Governmental organisations, Research Institutes and Associated Laboratories). In terms of domains, the total 77 RCTS members account for 68 distinct DNS domains (some members are in fact secondary campuses, thus sharing the same DNS domain with their headquarters).

As IPv6 has been present for many years in the RCTS backbone, its increased usage only depends on campus deployments, and IPv6-enabled external applications/content used by campus users. With this document, we intend to encourage by example organisations that haven't started their IPv6 deployment yet. It is worth noticing that IPv6 deployment outside of RCTS will benefit RCTS' own deployment, by moving more traffic from IPv6 to IPv6.

1 Introduction

RCTS was the third NREN to connect natively to the GÉANT network in 2003. There was significant previous work about IPv6, namely using IPv6 over IPv4 tunnels to obtain IPv6 connectivity with other NRENs. Transition mechanisms such as 6to4, a tunnelbroker and a Teredo relay have been deployed, but were all discontinued after 2012.

Static tunnels (to provide IPv6 connectivity to member organisations) were also discontinued when native IPv6 connectivity became possible. This change was caused either by peer/supplier readiness or through improved hardware and software support.

RCTS' backbone is nowadays mostly Cisco-based. Its design is focused on a strict separation of IP and Ethernet layers. Historically, the decommissioning of Serial, POS and ATM links and the convergence towards Ethernet, paved the way for an easier and simpler IPv6 deployment.

Accounting is a feature we find to be most important, and in that regard we originally designed all IPv6 gateways to member organisations to be on separate physical interfaces at the aggregation points. Only with routers running Cisco IOS-XR software and proper SNMP MIB support, were we able to start converging IPv4 and IPv6 gateways for the same member organisation – while keeping the ability to correctly count IPv4 and IPv6 packets, and their respective size.

2 Basic Internet Services

This section will cover considerations about DNS, Web and E-mail, the three basic Internet services. The content is mostly based on member organisations' IPv6 deployment. Internet services deployment tends to be distributed, which is positive for resilience, but requires every domain to support IPv6, in order to have all services using the new protocol version.

The hostnames and addresses below were collected using bash/perl scripts that consider the main DNS domain of every RCTS member. The table at Annex A contains RCTS members' names and their respective main DNS domain – some members are in fact secondary campuses, so the total number of distinct domains is 68. The third column indicates if the member is already connecting to RCTS using IPv6, or not.

2.1 **DNS**

The domain name system is one of Internet's key building blocks. It provides for naming/address conversions. DNS is probably the simplest service where an organisation has to perform IPv6 deployment.

The following table contains a list of forty nine IPv6-enabled nameservers, grouped by organisation (23 organisations).

Name	IPv4 Address	IPv6 Address
ns03.fccn.pt.	138.246.255.249	2001:4ca0:106:0:250:56ff:fea9:3fd
ns.utl.pt.	193.136.102.161	2001:690:2100:fffe::1
ns2.utl.pt.	193.136.102.162	2001:690:2100:fffe::2
io.ipb.pt.	193.136.195.219	2001:690:22c0:201::3
elara.ipb.pt.	193.136.195.220	2001:690:22c0:201::2
esel-ns01.esel.pt.	193.137.135.197	2001:690:21ec:15::11
esel-ns02.esel.pt.	193.137.135.198	2001:690:21ec:15::12
pintasilgo.ipt.pt.	193.137.236.212	2002:c189:ecd4::c189:ecd4
ns1.net.ipl.pt.	192.104.48.16	2001:690:2008::100:1001

Name	IPv4 Address	IPv6 Address	
ns.dns.pt.	193.136.0.1	2001:690:a00:1016:905::1	
lepus.lnec.pt.	193.136.104.17	2001:690:2140:8000::6:17	
orion.lnec.pt.	193.136.104.22	2001:690:2140:8000::6:22	
ns1.ist.utl.pt.	193.136.128.1	2001:690:2100:1::53:1	
ns2.ist.utl.pt.	193.136.128.2	2001:690:2100:1::2	
dns1.iscte.pt.	193.136.188.1	2001:690:21a0:1010::11	
dns3.iscte.pt.	193.136.188.4	2001:690:21a0:1010::10	
ns01.fccn.pt.	193.136.192.40	2001:690:a00:4001::200	
ns02.fccn.pt.	193.136.2.228	2001:690:a80:4001::200	
ns.uevora.pt.	193.136.216.18	2001:690:2006:200::18	
ns2.uevora.pt.	193.136.216.19	2001:690:2006:200::19	
dns.ualg.pt.	193.136.224.1	2001:690:2050::a	
dns2.ualg.pt.	193.136.224.2	2001:690:2050::b	
dragoeiro.uma.pt.	193.136.232.1	2001:690:20b0:1::1	
dns4.up.pt.	193.136.37.10	2001:690:2200:910::10	
dns2.ubi.pt.	193.136.64.34	2001:690:2300:6::1:34	
dns1.ubi.pt.	193.136.66.185	2001:690:2300:6::1:5	
dns.uportu.pt.	193.136.79.100	2001:690:2340:0:193:136:79:100	
dns2.uminho.pt.	193.137.16.145	2001:690:2280:801::145	
dns3.uminho.pt.	193.137.16.65	2001:690:2280:1::65	
dns.uminho.pt.	193.137.16.75	2001:690:2280:1::75	
ns-1.uc.pt.	193.137.200.1	2001:690:2180:3::1	
fctdns2.fct.pt.	193.137.21.194	2001:690:2178:2000::5	
isis2.fct.pt.	193.137.21.221	2001:690:2178:2000::6	
ns2.net.ipl.pt.	193.137.220.12	2001:690:2008::101:1001	
twinone.ipg.pt.	193.137.232.2	2001:690:23d0:b000::2	
twintwo.ipg.pt.	193.137.232.3	2001:690:23d0:b000::3	
ubik.ipg.pt.	193.137.232.7	2001:690:23d0:b000::7	
dns3.up.pt.	193.137.35.100	2001:690:2200:b10::100	
ns3.ipt.pt.	193.137.5.209	2001:690:2120::c189:5d1	

Name	IPv4 Address	IPv6 Address
viriato.ipt.pt.	193.137.5.6	2001:690:2120::c189:5ff
lusitano.ipt.pt.	193.137.5.8	2001:690:2120::c189:508
dns1.up.pt.	193.137.55.20	2001:690:2200:a10::20
dns2.up.pt.	193.137.55.21	2001:690:2200:a10::21
ns.iict.pt.	193.137.6.1	2001:690:21fc:5110::2
ns.ipcb.pt.	193.137.66.129	2001:690:2260:101::1:1
vdns1.ipsantarem.pt.	193.137.98.132	2001:690:2070:8000::32
vdns.ipsantarem.pt.	193.137.98.135	2001:690:2070:8000::35
a.ul.pt.	194.117.0.150	2001:690:21c0:a::150
b.ul.pt.	194.117.1.150	2001:690:21c0:b::150

Table 2.1: IPv6-enabled nameservers grouped by organisation

It must be noted that only two of this set of servers are using IPv6 addresses outside of RCTS' 2001:690::/29 allocated address block (originally in June 2000, as 2001:690::/35 and later expanded into 2001:690::/32 and 2001:690::/29). One of those two servers is a secondary server installed at a German University after a secondary server swap was agreed with FCCN. The other non-2001:690 IPv6 address is from the 6to4, block, and should be fixed and migrated to a 2001:690 address, as soon as possible.

Most of these DNS servers are running BIND or Microsoft software. FCCN is running BIND 9. BIND versions 9.9.5 and 9.9.6 usage was mentioned by some of our members.

The number of organisations which have made their authoritative DNS servers available over IPv6 is still low (23), when we compare to the total number of organisations connected to RCTS (77), representing only 30%. This, however, is the higher percentage of coverage in terms of basic services, mainly due to the fact that a single authoritative DNS server can cover for multiple domains.

2.2 Web

Web presence is of utmost importance for higher education organisations. Web services nowadays have some degree of complexity, but in terms of IPv6 reachability, only frontend systems are relevant.

The following table contains a list of IPv6-enabled main organisation webservers – 15 in total, which account for 22% of the 68 domains.

Name	IPv4 Address	IPv6 Address
titan.ipb.pt.	193.136.195.224	2001:690:22c0:201::4
www.esel.pt 193.137.135.184		2001:690:21ec::2

Name	IPv4 Address	IPv6 Address
www.fccn.pt	193.137.196.247	2001:690:a00:1036:1113::247
sdwsites.net.ipl.pt.	192.68.221.250	2001:690:2008:e120::100:5250
puppis.lnec.pt.	193.136.104.30	2001:690:2140:8000::6:30
arachne.uevora.pt.	193.136.216.21	2001:690:2006:200::21
www.ualg.pt	193.136.224.39	2001:690:2050::12
barracuda.uma.pt.	193.136.232.93	2001:690:20b0:1001:20::12
www.upt.pt	193.136.79.163	2001:690:2340:0:193:136:79:163
www.dns.pt	193.137.196.42	2001:690:a00:1036:1216::42
joshua.ipg.pt.	193.137.232.4	2001:690:23d0:b000::4
albatroz.ipt.pt.	193.137.5.12	2001:690:2120:0:213:21ff:fe6b:405
www.up.pt	193.137.55.13	2001:690:2200:a10::13
ul-web01.ul.pt.	194.117.3.18	2001:690:21c0:71::18
fenix.iscte.pt	193.136.188.28	2001:690:21a0:1010::28

Table 2.2: IPv6-enabled main organisation webservers

Only 15 organisations are currently publishing an IPv6 address for their main website (accounting for 20% of RCTS connected organisations). There is a variety of approaches, being that some use their www domain directly and some redirect it to other hostnames.

The software used to run such webserver varies mainly between Apache, NGINX and Microsoft IIS.

NGINX is used in some cases to provide IPv6 reachability to websites built over webserver software without IPv6 support. HAProxy is another open-source software package that can be used for the same purposes.

From a small survey held within our community, several sub-domains were mentioned, as having an IPv6-enabled webserver. The following websites are examples: www.estig.ipb.pt, www.ese.ipb.pt, www.eseat.ipb.pt, tecnico.ulisboa.pt (more than 100 websites).

2.3 E-mail

Electronic mail is one of the most relevant services provided by Campus Network managers. Enabling IPv6 in your e-mail system is a more challenging job when compared to other basic Internet services.

This service is heavily divided into two parts: the ability to send messages and the ability to receive messages.

Regarding the first part, assuring that your Mail Transfer Agent's (MTA's) addresses (either IPv4 or IPv6) don't fall on bad reputation lists is very important. When receiving messages, if you have an antispam system you need to also consider its IPv6 support capabilities. Some organisations may circumvent the usage of anti-spam systems to their IPv6-capable MTAs, but in the medium-to-long term, this is a bad choice, as you should apply the same rules/measures, independently of the IP version being used.

Table 2.3 contains a list of IPv6-enabled MTAs from RCTS connected organisations.

Name	IPv4 Address	IPv6 Address
cccm.pt.mxa.mpsmx.net.	195.22.26.202	2001:4cc0:2:e::72
ipma.pt.mxa.mpsmx.net.	195.22.26.202	2001:4cc0:2:e::72
uma.pt.mxa.mpsmx.net.	195.22.26.202	2001:4cc0:2:e::72
evunix.uevora.pt.	193.136.216.1	2001:690:2006:200::1
mailrelay1.net.ipl.pt.	192.104.48.8	2001:690:2008::100:2001
mailrelay2.net.ipl.pt.	192.104.48.9	2001:690:2008::100:2002
si-ssmtp3.ualg.pt.	193.136.224.12	2001:690:2050::11
si-ssmtp4.ualg.pt.	193.136.224.11	2001:690:2050::14
app01.fccn.pt.	193.137.198.36	2001:690:2080:8005::1002
app02.fccn.pt.	193.137.198.37	2001:690:2080:8005::1004
sx3.ipt.pt.	193.137.5.30	2001:690:2120::c189:51e
orion.lnec.pt.	193.136.104.22	2001:690:2140:8000::6:22
mx01.ul.pt.	194.117.3.98	2001:690:21c0:74::98
mx02.ul.pt.	194.117.3.99	2001:690:21c0:74::99
mx03.ul.pt.	194.117.42.37	2001:690:21c0:f602::37
mx04.ul.pt.	194.117.42.38	2001:690:21c0:f602::38
mail.iict.pt.	193.137.6.3	2001:690:21fc:5100::5
relay1.up.pt.	193.137.55.26	2001:690:2200:a10::26
relay2.up.pt.	193.137.55.27	2001:690:2200:a10::27
neptune.ipb.pt.	193.136.195.215	2001:690:22c0:201::215
mail.uportu.pt.	193.136.79.102	2001:690:2340:0:193:136:79:102
mail02.fccn.pt.	193.136.2.227	2001:690:a80:4001::500
aspmx5.googlemail.com.	74.125.142.26	2607:f8b0:4001:c03::1a
aspmx4.googlemail.com.	64.233.168.27	2607:f8b0:4003:c07::1a

Name	IPv4 Address	IPv6 Address
aspmx3.googlemail.com.	74.125.25.27	2607:f8b0:400e:c03::1a
alt2.aspmx.l.google.com.	74.125.25.26	2607:f8b0:400e:c03::1b
aspmx.l.google.com.	64.233.166.26	2a00:1450:400c:c01::1b
alt1.aspmx.l.google.com.	64.233.161.27	2a00:1450:4010:c01::1a
aspmx2.googlemail.com.	64.233.161.26	2a00:1450:4010:c01::1a

Table 2.3: MTAs from RCTS-connected organisations

From a total of 27 servers (29 are in the table, but the first three only have different DNS names), 19 are located within RCTS, and they are spread across 11 different organisations. The fact that seven servers (MTAs) are hosted by third parties (i.e. outside RCTS) should be highlighted. These IPv6-capable MTAs are hosted by Google (2a00:1450 and 2607:f8b0) and Claranet Portugal (2001:4cc0).

The software used in most IPv6-enabled MTAs (within RCTS) is mostly Microsoft Exchange, Sendmail, Exim and Postfix. FCCN is running AnubisNetworks, which is an integrated anti-spam solution. Other software being run at RCTS members' infrastructures include ASSP (Anti-Spam SMTP Proxy), an open-source, Perl-based project.

Mail Delivery Agents (MDAs) are also a relevant component. In this regard, Dovecot, an IPv6compatible open-source software is used. A known IPv6-compatible alternative is Courier-maildrop. In some cases, traffic between MTAs and MDAs are exclusively IPv6. This is however, internal campus traffic, and its volume is invisible from the outside world.

MDAs are significantly harder to discover from the outside than MTAs. Table 2.4 contains the result of queries to mail.<domain>, pop.<domain> and imap.<domain>. Simple variations to hostnames like mail0 or pop3 will make those -- eventually dual-stack -- servers, invisible to this effort.

Name	Hostname scanned	IPv4 Address	IPv6 Address
esel-mailnlb01.esel.pt.	pop; imap	193.137.135.196	2001:690:21ec::2
evunix.uevora.pt.	mail; pop	193.136.216.1	2001:690:2006:200::1
imap.fccn.pt.	pop; imap	193.137.198.78	2001:690:2080:8003::1500
mail.iict.pt.	mail	193.137.6.3	2001:690:21fc:5100::5
mail.up.pt.	mail	193.137.55.11	2001:690:2200:a10::11
mail.upt.pt.	mail	193.136.79.102	2001:690:2340:0:193:136:79:102
ns2.utl.pt.	mail	193.136.102.162	2001:690:2100:fffe::2
sorveira.uma.pt.	pop; imap	193.136.232.97	2001:690:20b0:1001:1::52

Table 2.4: IP addresses for certain Mail Delivery Agents

3 Other Services

3.1 Network Time Protocol (NTP)

RCTS' Network Time Protocol is built over four Stratum 1 servers, which are IPv6-enabled and connected to GPS antennas. Two of them are installed at Lisbon, one at Oporto and another at Coimbra, Portugal. The Lisbon location is LNEC; Oporto's location is the Engineering Faculty of University of Porto; and the Coimbra server is hosted at University of Coimbra. Additionally, there is a fifth Stratum 1 server, which is not IPv6-enabled yet, connected to an atomic clock, under the organisation that manages the legal hour (oal.ul.pt – Lisbon's Astronomic Observatory).

For RCTS members, only one of the Stratum 1 servers in Lisbon is available (a Linux-based appliance from Meinberg), along with three other IPv4-only Stratum 2 servers. These servers are built over Cisco backbone routers running IOS, but with the current trend to enable IOS-XR, it is foreseeable that these NTP services' queries will start to be answered over IPv6.

3.2 Mirrors (FTP, HTTP)

FTP and HTTP mirrors generate significant amount of outbound traffic, independently of the IP version being used. Inside RCTS members' campus networks several mirrors exist. In terms of content, operating systems are a great contributor to high levels of traffic. ftp.tecnico.ulisboa.pt, ftp.uevora.pt, mirrors.net.ipl.pt and mirrors.fe.up.pt are some of the most used dual-stack mirrors.

Figure 3.1 show that mirrors.fe.up.pt is measuring the amount of traffic being used in each protocol version:

Welcome to FEUP's Mirror Service.

Our url is *mirrors.fe.up.pt*. It's available in HTTP, FTP and RSYNC, and you can connect to us using IPv4 and IPv6. Your IP address is

Any questions and suggestions can be forwarded to mirrors [AT] fe.up.pt.

Current bandwidth utilization 57.86 Mbit/s (IPv4)

Current bandwidth utilization 0.06 Mbit/s (IPv6)

Figure 3.1: FEUP's measurement of IPv4 and IPv6 utilization

3.3 Filesender

FileSender is a web based application that allows authenticated users to securely and easily send arbitrarily large files to other users. Authentication of users is provided through SimpleSAMLphp, supporting SAML2, LDAP, RADIUS and more. The software's purpose is to allow the sending of a large file to someone, have that file available for download for a certain number of downloads and/or a certain amount of time, followed by the file's deletion. The software is not intended to provide a permanent file publishing platform.

RCTS has a FileSender service available at filesender.fccn.pt (using 193.136.192.125 and 2001:690:a00:4001::125). Due to the nature of this service, its increased usage might generate more IPv6 traffic. The following picture shows the service's web interface.

E GILESER		ETT	HEAnet 🔍 SURF
Send File Guest	Voucher My Files	H	elp About Log Off
/elcome Carlos Friaças	i		1.5 HTML 5 😽
Send a file			
To:		1	Enter delivery email
From:	cfriacas@fccn.pt		address(es)
Subject: (optional)		2	Set expiry date
Message: (optional)		3	Browse for a file
		4	Click Send
		11	
Expiry date:	15/01/2015]	
Select your file:	Choose File No file chosen]	
	I accept the terms and conditions of this service. [Show/Hide]		

Figure 3.2: Web interface for Filesender

3.4 Other Services

Active Directory, LDAP and Kerberos services are also IPv6-enabled at University of Lisbon, namely to serve the tecnico.ulisboa.pt domain. The routing service at the same domain is also IPv6 compatible, built over Quagga and XoRP, in order to run OSPFv2, OSPFv3, BGP and PIM-SMv2.

The FreeRADIUS software package supports IPv6. At IPL, IPv6 is activated internally, but at the moment it is not active towards the eduroam hierarchy, due to a bug between this software and Radiator software, which caused unexpected message rejections. This issue is currently under evaluation.

IPL also provides IPv6 connectivity on its VPN PPTP service.

4 Available IPv6 Infrastructures

4.1 IPv6-Only Testbed

FCCN is running a public IPv6-only virtualised server with DNS, WEB and E-MAIL services, at apenasipv6.fccn.pt.

The aim of this tool is to allow third-party domains to test their IPv6 reachability. Because the DNS delegation of "apenasipv6" under fccn.pt doesn't have any IPv4-enabled address involved, this DNS sub-domain is only visible to hosts with IPv6 connectivity. In that case, the Web service at www.apenasipv6.fccn.pt will be reachable and a 19-minute video (locally produced in 2011) about IPv6 (in Portuguese language) is played.

The e-mail service installed at this host is the most useful of all three, because it allows anyone from the IPv6 Internet not only to send messages, but also to receive them. By sending a message to auto@apenasipv6.fccn.pt, any sender will receive a message back from the installed VACATION software. If the reply message doesn't arrive from the autoipv6@servidor.apenasipv6.fccn.pt address, it means the sender's Mail Transfer Agent (MTA, listed on DNS MX records) is not IPv6-capable yet.

4.2 Cisco 6DEPLOY Lisbon Training Lab

A Cisco training lab is deployed in Lisbon, Portugal, at the core of FCCN's backbone. This lab is composed by six Cisco 1941 routers and one 2911 router acting as a console server and gateway to the platform. The lab set is completed by a Cisco Catalyst 2960 switch, used to interconnect all these devices and also by two servers (UCS-SP5-C22E), designed to host virtual machines to be used during trainings. The main goal of these virtual machines is to support practical training exercises with IPv6-enabled services, including those described in previous sections.

This infrastructure is available to be used remotely, not only by the Portuguese R&E community members, but also by other organisations that apply to use it, through the 6DEPLOY Testbed reservation process (http://www.6deploy.eu/index.php?page=testbed_reservation2). The Lisbon lab is part of a global network of Cisco IPv6 training labs, managed by several organisations that provide IPv6 trainings (such as AfriNIC, LacNIC, Renater and Consulintel), and also focusing on IPv6 deployment advocacy.

5 User connectivity

IPv6 deployment within RCTS members' campuses highly depends on IPv6 availability at the eduroam infrastructure. Campus wireless networks have been the real driver for overall IP traffic growth during the last decade. Eduroam deployments have also been the reason behind new IPv4 address space requests to RCTS' Local Internet Registry. This means more people and more devices are connecting to the hotspots installed within campuses throughout the country.

In terms of volume, the following graphs show how IPv6 traffic at RCTS has been evolving. The first picture shows the volume from the 46th week to the 50th week of 2014, using 2-hour average values.

Figure 5.1: IPv6 traffic within RCTS – weeks 46 to 50 of 2014

The latter pictures (Figure 5.2) show the same evolution, with one-day averages, but with a span over the last 12 months and since data started to be collected (September 2012).

Figure 5.2: IPv6 traffic within RCTS – from September 2012

Figure 5.3 describes the IPv4 vs. IPv6 volume of traffic evolution at RCTS during the last 12 months. We consider this measurement as a good metric for evaluating RCTS' IPv6 deployment success.

Figure 5.3: IPv4 versus IPv6 traffic within RCTS during a 12-month period

Unfortunately, the amount of simultaneous IPv6 users over eduroam is not yet available.

One important aspect while provisioning IPv6 to end-user networks is how to operate DHCPv6 and Stateless Autoconfiguration. The following commands (on Cisco IOS) describe optimisations to be used to achieve specific scenarios:

- Generally, to protect against blackholing: ipv6 nd router-preference High
- For networks served by DHCPv6: ipv6 nd managed-config-flag
- For networks using stateless autoconfiguration, but served by DHCPv6 to supply extra info such as default domainname and forwarding addresses: **ipv6 nd other-config-flag**

The following two commands should also be applied to every IPv6 interface, in order to protect against redirects and spoofing:

User connectivity

- no ipv6 redirects
- ipv6 verify unicast reverse-path

A bug was detected while using ISC DHCPv6, causing issues with HP printers (where disabling IPv6 on the printer is the best known workaround).

Lease renewals in networks where only DHCPv6 is available needs to be defined cautiously. The supplied address needs to have a preferred lifetime higher than the forecasted period for the lease renewal. If this is not the case, the address is deprecated before the renewal event. This happens because dhcpd6, by default (if the parameter is not specified), calculates preferred lifetime as 62.5% of lease/valid lifetime. The following set of configuration lines solves this issue:

- default-lease-time 86400; # 1 day
- option dhcp6.info-refresh-time 21600; # 6 hours
- option dhcp-renewal-time 32400; # 50% of preferred lifetime or 37,5% of lease/valid lifetime
- option dhcp-rebinding-time 51840; # 80% do preferred lifetime or 60% of lease/valid lifetime

In any case, the renewal-time and rebinding-time values need to be lower than the preferred lifetime, since the first value also needs to be lower than the second.

6 IPv6 deployment principles

The following list describes the set of common rules followed by RCTS members in their effort to deploy IPv6 on the infrastructures they manage:

- IPv4 addresses are not removed when IPv6 addresses are added.
- The security policy for IPv6 must be similar to the organisation's IPv4 security policy.
- An exception to the previous rule is allowing ICMPv6, which is needed to enable endhosts to determine PATH MTU values.
- The organisations' DNS domain needs to be «glued» to his parent hierarchy by at least one nameserver. The parent zone needs to include an IPv6 "glue record", if the nameservers supporting the domain have their own name inside the zone.
- AAAA records should only be published (and kept on DNS zones) when proper IPv6 connectivity is available and tested.
- Systems/services running over IPv4 and IPv6 should be monitored over both protocol versions.
- Use IPv6 Router Advertisement Guard at the Ethernet layer, when that feature is available, in order to avoid problems with rogue router advertisements.
- Don't use different DNS names for the same service in IPv4 and IPv6.
- Never force IPv4 usage over IPv6 usage this approach will only allow IPv6 communication when something goes wrong with IPv4 connectivity.
- Always use DNS names while configuring services. IPv4 addresses hardwired in configurations will disable IPv6 communication. You shouldn't also hardwire IPv6 addresses.
- Servers/services IPv6 addresses must be defined in a static way (don't use stateless autoconfiguration).
- At least one MX record on the organisation's main DNS zone needs to have an associated AAAA record, provided IPv6 connectivity is available and properly tested.

7 Conclusion

IPv6 deployment is still an unfinished business, globally, at the end of 2014 – and this is also true for RCTS. However, it is clear for a great majority of IT professionals that IPv6 usage is the only way forward in order to sustain public Internet growth, and that is also the case for the Portuguese R&E IT community.

After going through this document, the reader should be able to understand key aspects of RCTS' IPv6 deployment, and benefit from lessons learned over a ten-year period. The most important message is that IPv6 deployment will only be accomplished when everyone decides to help, by deploying their own set of services with IPv6 enabled.

Appendix A IPv6 connectivity status

RCTS Member	DNS Domain	IPv6 connectivity to RCTS
Agência de Inovação - Lisboa	adi.pt	No
Agência de Inovação - Porto	adi.pt	No
Associação DNS	dns.pt	Yes
Agência Portuguesa do Ambiente	apambiente.pt	No
European Maritime Safety Agency	emsa.europa.eu	No
Escola Náutica Infante D.Henrique	enautica.pt	No
Escola Superior de Enfermagem de Coimbra	esenfc.pt	Yes
Escola Superior de Enfermagem de Lisboa	esel.pt	Yes
Escola Superior de Enfermagem do Porto	esenf.pt	No
Escola Superior de Hotelaria e Turismo do Estoril	eshte.pt	No
FCT - Unidade FCCN	fccn.pt	Yes
FCT - Unidade FCCN – Porto	fccn.pt	Yes
Fundação Mário Soares	fmsoares.pt	Yes
Instituto Gulbenkian de Ciência	igc.gulbenkian.pt	No
Instituto Hidrográfico	hidrografico.pt	No
Instituto de Investigação Científica Tropical - Pólo I	iict.pt	Yes
Instituto de Investigação Científica Tropical - Pólo II	iict.pt	No
Instituto Nacional de Investigação Agrária e Veterinária	iniav.pt	No
International Iberian Nanotechnology Laboratory	inl.int	No
Instituto Nacional de Saúde D.Ricardo Jorge	insa.pt	No
Instituto Politécnico de Bragança	ipb.pt	Yes
Instituto Politécnico de Beja	ipbeja.pt	Yes
Insituto Politécnico de Coimbra	ipc.pt	No
Instituto Politécnico do Cávado e do Ave	ipca.pt	No
Instituto Politécnico de Castelo Branco	ipcb.pt	Yes
Instituto Politécnico da Guarda	ipg.pt	Yes
Instituto Politécnico de Lisboa	ipl.pt	Yes
Instituto Politécnico de Leiria	ipleiria.pt	Yes

Executive Summary

RCTS Member	DNS Domain	IPv6 connectivity to RCTS
Instituto Português do Mar e da Atmosfera	ipma.pt	Yes
Instituto Português do Mar e da Atmosfera - Pólo Algés	ipma.pt	No
Instituto Politécnico do Porto	ipp.pt	No
Instituto Politécnico de Portalegre	ipportalegre.pt	No
Instituto Politécnico de Santarém	ipsantarem.pt	Yes
Instituto Politécnico de Setúbal	ips.pt	No
Instituto Politécnico de Tomar	ipt.pt	Yes
Instituto Politécnico de Tomar - Escola Superior de Tecnologia	esta.ipt.pt	No
Instituto Politécnico de Viseu	ipv.pt	No
Instituto Politécnico de Viana do Castelo	ipvc.pt	No
Instituto Superior de Ciências do Trabalho e da Empresa - IUL	iscte-iul.pt	Yes
Instituto Superior de Gestão	isg.pt	No
Instituto Superior de Psicologia Aplicada	ispa.pt	No
Instituto Superior de Entre o Douro e Vouga	isvouga.pt	No
Laboratório de Instrumentação e Física de Partículas	lip.pt	Yes
Laboratório Nacional de Engenharia Civil	lnec.pt	Yes
Laboratório Nacional de Energia e Geologia	lneg.pt	No
Academia das Ciências de Lisboa	acad-ciencias.pt	No
Centro Científico e Cultural de Macau	cccm.pt	No
Pavilhão do Conhecimento - Ciência Viva	pavconhecimento.pt	Yes
Direcção Geral das Estatístícas do Ensino e Ciência	dgeec.mec.pt	No
Direcção Geral do Ensino Superior	dges.mec.pt	No
Fundação para a Ciência e a Tecnologia	fct.pt	Yes
Sec. Geral do Ministério da Educação e Ciência – Laranjeiras	sec-geral.mec.pt	No
Sec. Geral do Ministério da Educação e Ciência – 5 de Outubro	sec-geral.mec.pt	No
Universidade de Aveiro	ua.pt	Yes
Universidade Aberta	uab.pt	Yes
Universidade dos Açores	uac.pt	No
Universidade Autónoma de Lisboa	ual.pt	No
Universidade do Algarve	ualg.pt	Yes
Universidade Atlântica	uatlantica.pt	No
Universidade da Beira Interior	ubi.pt	Yes
Universidade de Coimbra	uc.pt	Yes
Universidade Católica Portuguesa	ucp.pt	No
Universidade Católica Portuguesa - Centro Regional do Porto	crp.ucp.pt	No
Universidade de Évora	uevora.pt	Yes
Universidade de Lisboa	ulisboa.pt	Yes
Universidade Lusíada de Lisboa	lis.ulusiada.pt	No

Best Practice Document: IPv6 Deployments within RCTS

Executive Summary

RCTS Member	DNS Domain	IPv6 connectivity to RCTS
Universidade Lusíada do Porto	por.ulusiada.pt	No
Universidade Lusófona de Lisboa	ulusofona.pt	No
Universidade Lusófona do Porto	ulp.pt	No
Universidade da Madeira	uma.pt	Yes
Universidade do Minho	uminho.pt	Yes
Universidade Nova de Lisboa	unl.pt	Yes
Universidade do Porto	up.pt	Yes
Universidade Portucalense	upt.pt	Yes
Universidade de Trás-os-Montes e Alto Douro	utad.pt	No
Universidade de Lisboa - Pólo Alameda	utl.pt	Yes

Table A.1: RCTS members and their IPv6 connectivity status

References

[4]	Evoluating the programs towards IDVC Implementation
[1]	Evaluating the progress towards IPV6 Implementation, Martin Puctka, September 2011 (CRPD118, Czech Republic)
	http://www.toropa.org/activities/campus.bp/pdf/gp2.pa2.t4.chpd118.pdf
[2]	Intp://www.terena.org/activities/campus-bp/pui/gns-nas-t4-cbpuilo.pui
[2]	IPV6 Migration Guide,
	Jani Sirpoma, February 2013 (Finland)
	http://www.terena.org/activities/campus-bp/pdf/gn3-na3-t4-
	ipv6_migration.pdf
[3]	Practical IPv6 Monitoring on Campus,
	Matěj Grégr, Tomáš Podermański et al., May 2011 (CBPD132, Czech
	Republic)
	http://www.terena.org/activities/campus-bp/pdf/gn3-na3-t4-cbpd132.pdf
[4]	Deployment of Services on IPv6,
	J.Benoit, S.Muyal, C.Palanché, P.Wender, November 2013 (CBP-02, France)
	http://services.geant.net/cbp/Knowledge_Base/Campus_Networking/Docu
	ments/CBP-02_deployment-of-services-on-IPv6.pdf
[5]	6to4, IS CURRENT 6TO4 RELAY DEPLOYMENT ADEQUATE?
	Mónica Domingues, Carlos Friacas, David Malone
	http://www.maths.tcd.ie/~dwmalone/p/IPv6TD07.pdf
[6]	TEREDO
[-]	http://technet.microsoft.com/en-us/library/bb457011.aspx
[7]	IPv6 Deployment Aggregated Status
	https://www.vyncke.org/ipv6status
[8]	Cisco 6Lab – The place to monitor IPv6 adoption
r-1	http://6lab.cisco.com/stats/
[9]	Google's IPv6 Statistics
L- J	https://www.google.com/intl/en/inv6/statistics.html
	https:// httmsbogle.com/inte/en/ipvo/statistics.htm

Glossary

AFRINIC	African Network Information Centre
ASN	Autonomous System Number
ATM	Asynchronous Transfer Mode
BIND	Berkeley Internet Name Daemon
Consulintel	The IPv6 Company
DNS	Domain Name System
eduroam	Education Roaming
FCT-FCCN	Fundação para a Ciência e a Tecnologia, I.P. – Unidade FCCN
FTP	File Transfer Protocol
GPS	Global Positioning System
НТТР	HyperText Transfer Protocol
ICMPv6	Internet Control Message Protocol version 6
IIS	Internet Information Services
IOS	Internetwork Operating System
IP	Internet Protocol
IPv4	Internet Protocol version 4
IPv6	Internet Protocol version 6
IT	Information Technology
LACNIC	Latin America and Caribbeean Network Information Centre
LDAP	Lightweight Directory Access Protocol
LNEC	Laboratório Nacional de Engenharia Civil
MIB	Management Information Base
MTA	Mail Transfer Agent
MDA	Mail Delivery Agent
NREN	National Research and Education Network
NTP	Network Time Protocol
ΡΑΤΗ ΜΤυ	Path Maximum Transfer Unit
POS	Packet Over SONET
R&E	Research and Education
RADIUS	Remote Authentication Dial In User Service
RCTS	Rede Ciência Tecnologia e Sociedade
RENATER	Réseau National de télécommunications pour la Technologie l'Enseignement et la
	Recherche, the French NREN
SAML2	Security Assertion Markup Language 2.0
SNMP	Simple Network Management Protocol

Complete BPDs are available at http://services.geant.net/cbp/Pages/Home.aspx campus-bp-announcements@geant.org