

www.openflow.org

Kurt Baumann kurt.baumann@switch.ch

Zurich, 08. March 2013

Outline

- SDN to OpenFlow
- OpenFlow a valid technology ☺
 - Basic Concept
 - How it works
- GÉANT OpenFlow Facility (GN3-JRA2T5)

SDN

Software Defined Networking (SDN)

is transforming networking architecture.

In the SDN architecture:

- Control and data planes are decoupled.
- Network intelligence and state are logically centralized.
- The underlying network infrastructure is abstracted from the applications.
- ...
- and OpenFlow, is the first standardized interface designed specifically for SDN

Source: ONS Whitepaper: "Software-Defined Networking – The new Norm for Networks, 13. April 2012

OpenFlow Basic Concept and how it works

Source: OpenFlow tutorial, ONS, Santa Clara Marriot, April 16, 2012

OpenFlow in a Nutshell

"OpenFlow is created and hosted at the University of Stanford in 2008 for evangelizing and supporting the OpenFlow Community"

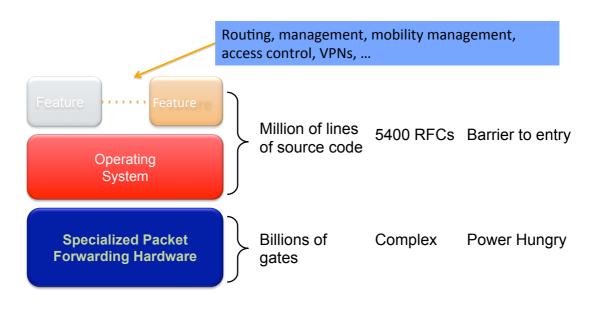
What it is:

- · An open standardized interface approaching SDN architectures
- L2 communication protocol gives access to the forwarding plan of a network switch, router. (www.openflow.org)

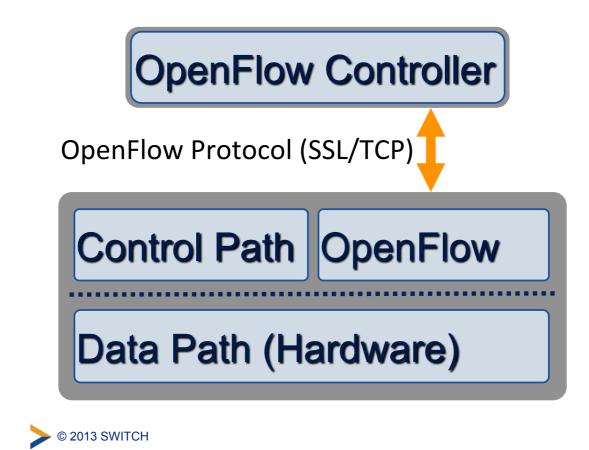
Motivation:

- · The improvement of research and innovation in networking,
- To encourage networking vendors to implement OpenFlow to their switching products.

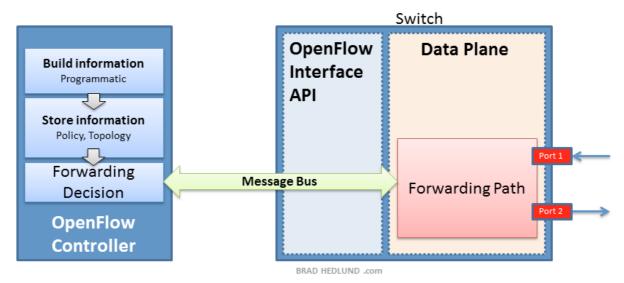
Basic Idea:

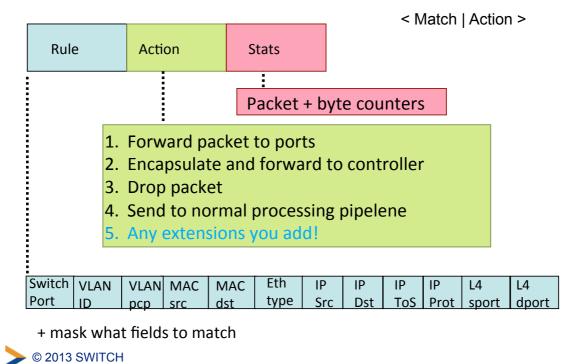

- OpenFlow, is based on an Ethernet switch with an internal-flow table and a standardized interface to add and remove flow entries.
- Delivering a shared data & forwarding plane and a sliced, user-managed control plane at L2.

Regulation of the SDN (OpenFlow) Standards:

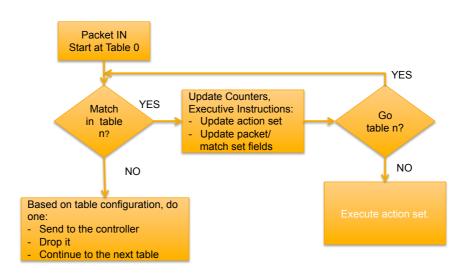

• Open Network Forum (ONF) (<u>www.opennetworking.org</u>)

The Network Industry today




OpenFlow Basics: Entities / Functionalities

Externally controlled Switch



OpenFlow Basics Flow Table Entries OF v1.1

Packet Flow

OpenFlow – Rule Examples (1)

Switching

Switch Port	MAC src	MAC dst			IP Src	IP Dst			TCP dport	Action
*	*	00:1f:	*	*	*	*	*	*	*	port6

Flow Switching

	MAC src					IP Dst	IP Prot	TCP sport	TCP dport	Action
port3	00:20	00:1f	0800	vlan1	1.2.3.4	5.6.7.8	4	17264	80	port6

Firewall

Switch Port	MA(src	2	MAC dst	Eth type	VLAN ID	IP Src	IP Dst	IP Prot	TCP sport	TCP dport	Action
*	*	*		*	*	*	*	*	*	22	drop
© 2013 SWITCH											

11

OpenFlow – Rule Examples (2)

Routing

	MAC src	MAC dst						TCP sport	TCP dport	Action
*	*	*	*	*	*	5.6.7.8	*	*	*	port6

VLAN Switching

Switch Port	MAC src	MAC dst	Eth type	VLAN ID		IP Dst			TCP dport	Action
*	*	00:1f	*	vlan1	*	*	*	*	*	port6, port7, port9

Details see: OF Switching Specification http://www.openflow.org/documents/openflow-spec-v1.1.0.pdf

OpenFlow Implementations

Hardware Vendors

- Commercial -> NEC, HP, Pronto, Toroki, IBM, Pica8
- Experimental -> Juniper, Cisco

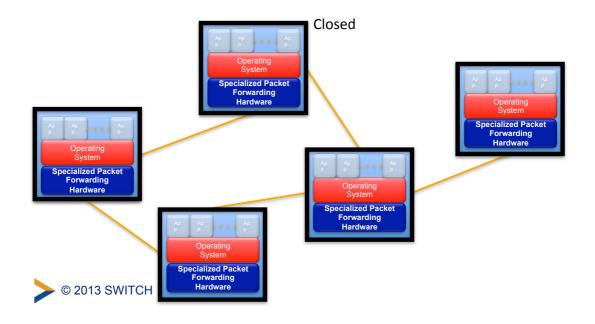
Software

– OF switches

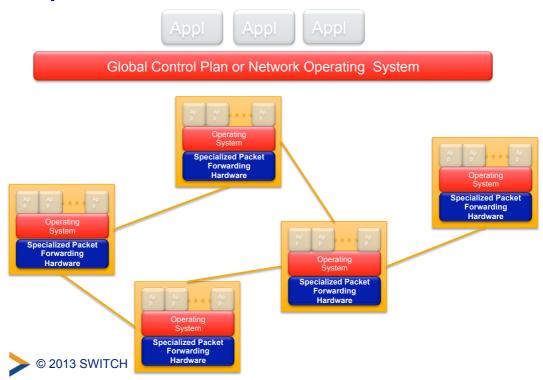
- Stanford's software reference design (user-space implementation)
- Open vSwitch (user-space and kernel module implementation)
- NetFPGA-based switch (hybrid solution based on Stanford's ref. sw)

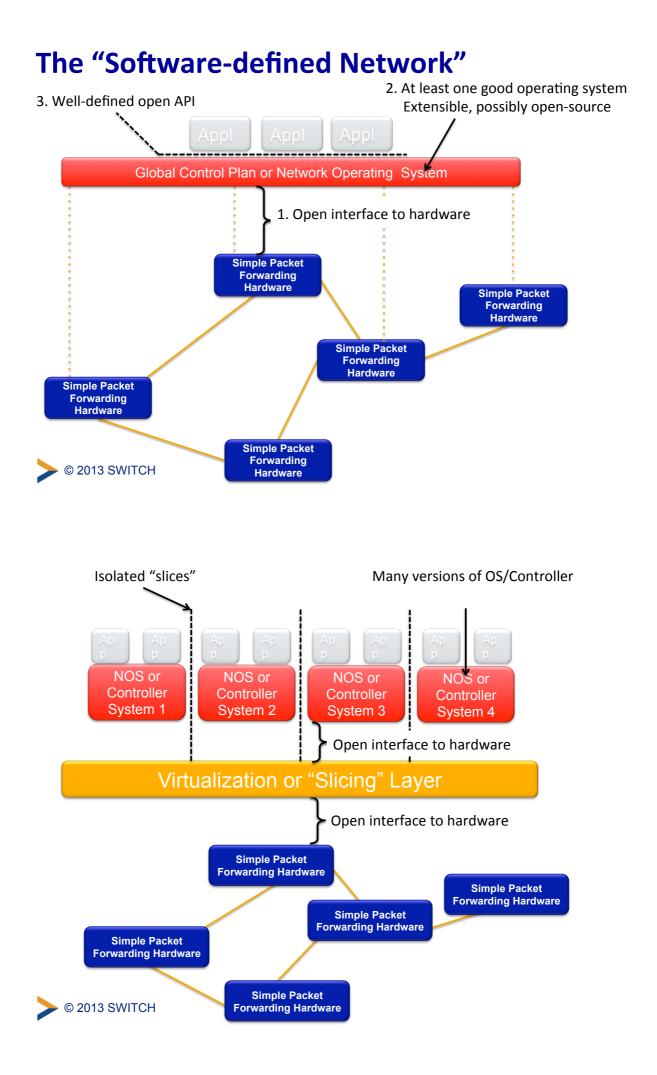
- OF controllers

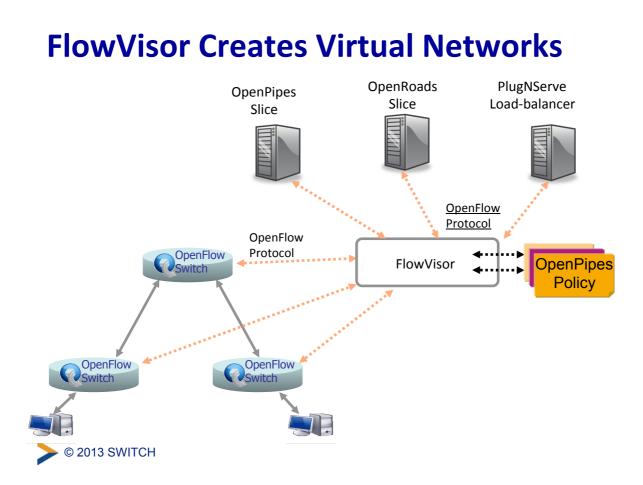
- NOX
- Beacon
- Trema (modular framework for developing OF controllers)
- Other NOX-based implementations
- NEC Programmable Flow
- FlowVisor (Proxy Controller for slicing)

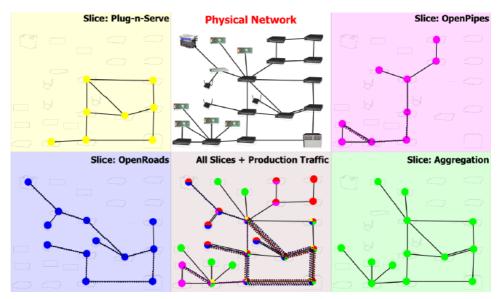

SDN/OpenFlow Application

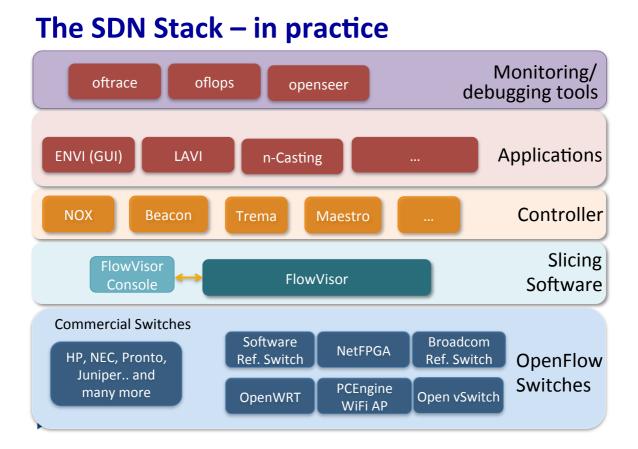
Source: OpenFlow tutorial, ONS, Santa Clara Marriot, April 16, 2012




ICT Focus 2012

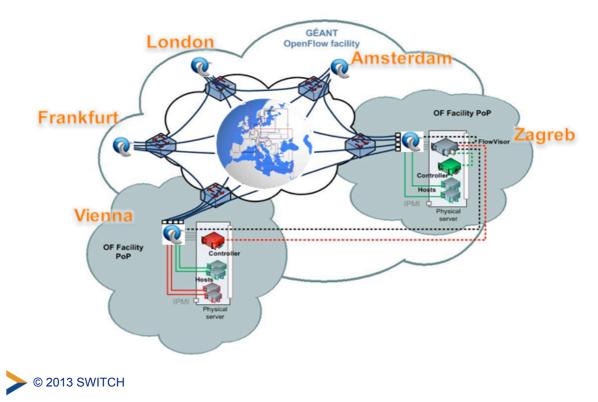

Today we have Closed Boxes, Fully Distributed Protocols


"Software Defined Networking" approach to open it

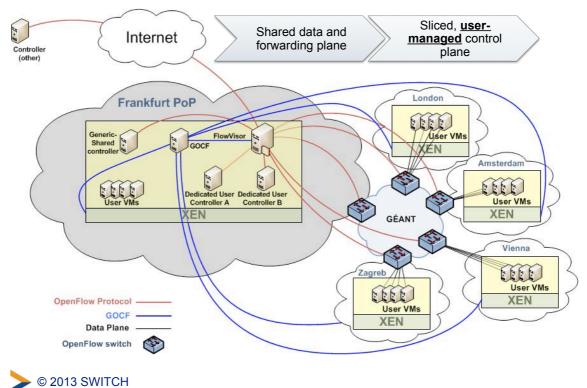


Conclusion in Graphics

R. Sherwood, et. al, "Carving research slices out of your production networks with OpenFlow", ACM SIGCOMM Computer Communications Review, 40-1, 2010

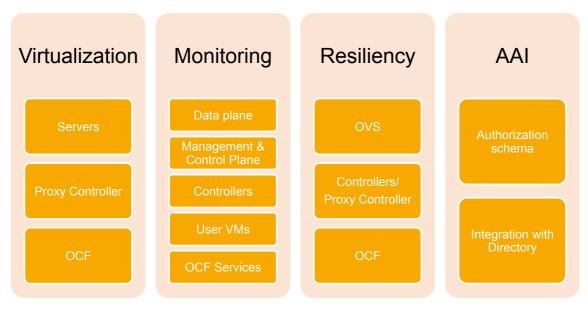


The Case of GÉANT – TaaS


Source: – GÉANT JRA2T5 – GÉANT OpenFlow Facility Design, GN3-09-331/ Joint Research Workshop JRA1/JRA2T5 in Utrecht NL, and Vienna AT.

Implementation over GÉANT (1)

Implementation over GÉANT (2)



Design Principles

- 5 OpenFlow PoPs interconnected with a full mesh of L2VPNs over GÉANT
 - Co-located with GÉANT PoPs
- · 2 general purpose servers per PoP for:
 - 1x Open vSwitch providing OpenFlow functionality
 - 1x XEN hypervisor delivering user VMs and hosting services
- Using OpenFlow v1.0 -> VLAN-based slicing
 - Limited capabilities for non-VLAN slicing for VLAN-based experimentation
- Orchestration software: FP7 OFELIA Control Framework (OCF)
 - Resource allocation and instantiation (per slice)
 - Authentication/Authorization (AA) and policy framework
 - Web-based user interface for slice access and management
 - Robustness, stability and scalability in terms of number of users, support for concurrent experiments and number of managed resources.
 - Monitoring of slices and the OCF components themselves

Operations

Source: Layer 123, SDN& OpenFlow Wolrd Congress, Darmstadt, Presentation Application of SDN in Research Networks, Michael Enrico, Chief Technology Officer DANTE, Afrodite Sevasti, Chief Business Development Officer, GRNET, 24. October 2012, Darmstadt.

Use Cases – Categories / Activities

- Using OpenFlow as a traffic engineering mechanism, managing backbone capacity and paths, for instance MPTCP and
- Using OpenFlow to deliver 'vanilla' layer 2 slices researching on layer 2 (and above) and experimentation on the actual data and control plane network technologies, for instance research on new protocols or capabilities
- Current activities on the OF Facility:
 - Contest Winner
 - "Improving resiliency and throughput of transport networks with OpenFlow and Multipath TCP" – Budapest University of Technology and Economics, MTA- BME Future Internet Research Group, 22.03.2013

OpenFlow and Performance

Performance Tests:

On Mockup@grnet

Results:

- 1st Test OVS mac forwarding without OpenFlow
- 2nd Test MAC forwarding functionality provided by OpenFlow controller
- 3rd Test OFV mac forwarding OF enabled & VLAN tagged frames.

References

- OpenFlow <u>www.openflow.org</u>
- OpenFlow White paper:
- <u>http://www.openflow.org/documents/openflow-wp-latest.pdf</u>
- SDN(OpenFlow) activities Internet 2
- http://www.internet2.edu/network/ose/
- OFELIA: <u>http://www.fp7-ofelia.eu/</u>
- GÉANT GN3, JRA2 Multidomain Network Service Research, T5
- <u>https://intranet.geant.net/sites/Research/JRA2/pages/home.aspx</u>
- Standards of OpenFlow: Open Network Forum (ONF)
- <u>http://www.opennetworking.org</u>
- SDNRG (IRTF) <u>http://irtf.org/sdnrg</u>
- JGN-X: RISE <u>http://www.jgn.nict.go.jp</u>
- Deployment and Operation of Wide-area Hybrid OpenFlow Networks
- <u>http://hiroshi1.hongo.wide.ad.jp/hiroshi/papers/2013/Kanaumi_e96-b_1_108.pdf</u>

> © 2013 SWITCH

Thank you for your attention!

Questions?

