
connect • communicate • collaborate

TCP Performance and Bulk Transfers

Alexander Gall, SWITCH

alexander.gall@switch.ch

Performance U! Winter School

Zurich, 6.-8.3.2013

mailto:alexander.gall@switch.ch

connect • communicate • collaborate

OVERVIEW

Reliable, window-based transmission basics

TCP congestion control mechanisms

Failure of TCP on long fat networks

High-Speed TCP variants

Explicit congestion control methods

Buffers, bloat, active queue management

connect • communicate • collaborate

OVERVIEW OF BULK TRANSFERS

Goal: transfer a large set of data reliably with the maximum
throughput offered by the network at any given time.

Basic service provided by TCP
Receiver acknowledges receipt of data, sender retransmits lost data.
Sender numbers bytes so receiver can reconstruct proper order.
Sender probes network for maximum data rate, backs off during
congestion.

All application-layer protocols running on TCP can perform bulk
transfers (HTTP, FTP, ...)

connect • communicate • collaborate

WINDOW-BASED TRANSMISSION

Trivial file transfer protocol (TFTP, RFC1350): send one packet,
wait for acknowledgement (uses UDP).

Throughput: 1 packet/Round Trip Time (RTT). Can be increased by
sending more data before expecting acknowledgement. This is
called the “window”.

– Send bigger packets (limited to MTU)
– Send more packets per RTT

connect • communicate • collaborate

HOW DOES WINDOW-BASED
TRANSMISSION WORK?

Basic concepts:

A packet is ‘in flight’ if it has been sent but not yet acknowledged.

Only one ‘window-full’ of data can be in flight at any given time.
– This is the maximum amount of data that can be in transit on the network path.

The window ‘slides’.
– As one packet is acknowledged and ‘leaves’ the window, another can be

transmitted.

The sender must buffer a packet until the receiver acknowledges
receipt.

– Needed for re-transmission in case of loss or corruption.

– Means that the sender’s buffer limits the window size.

Window-based transmission is a key element of TCP.

connect • communicate • collaborate

THE SLIDING WINDOW

The window moves to the right as data is acknowledged.
Advertised window = buffer available at receiver: sender may only
send as much as the receiver can accept (receiver-based flow-
control).

connect • communicate • collaborate

WINDOW SIZE AND THROUGHPUT

In the absence of packet loss:

 Throughput = Window / RTT.

Increasing the window increases the throughput. Is there a value,
after which further increase no longer has a benefit?

Throughput is bounded by the bandwidth of the bottleneck link of a
network path, i.e.

 Throughput
MAX

 = bottleneck bandwidth

Requires the window to be

 Window
MAX

 = bottleneck bandwidth * RTT = BDP

Introduces the bandwith-delay product BDP

A smaller window limits throughput, a larger window has no effect

connect • communicate • collaborate

LINKS, PATHS AND PIPES

Link capacity C (aka bandwidth, often loosely called link speed): number of bits
the link can transport per unit time, measured in bits per second (bps), e.g. FE =
100Mbps, GE = 1Gbps.
Path: concatenation of links, characterized by OWD (one-way delay) and
bottleneck capacity. Can be viewed as a “pipe”:

“Filled pipe” can hold C * OWD bits, e.g.
C [Mbps] OWD [ms] Size of pipe[MiB]

100 50 0.625

1000 50 6.25

10000 50 62.5

connect • communicate • collaborate

WINDOW SIZE CALCULATION

How large must the window be to keep the pipe filled? First ACK
received after one RTT → window must be no smaller than the
bandwidth-delay product (BDP):

Window size (bytes) ≥ Bandwidth (bytes/sec) * round-trip time (sec).

Networks with large BDP are called ‘Long Fat Networks’ (LFNs or
“elephants”).

C [Mbps] RTT [ms] BDP [MiB]

100 100 1.25

1000 100 12.5

10000 100 125

connect • communicate • collaborate

HOW IS THE WINDOW SIZE
DETERMINED?

The window size is equal to the smallest of:
The sender’s buffer size.

The receiver’s advertised window size (bounded by receive buffer
size).

Used to need to guess BDP beforehand, tune buffers.

Modern systems can dynamically tune buffers.

TCP uses an additional congestion window to probe for effective
BDP, more on this later.

Note: window limited to 64KiB in original TCP. Need to use
window scaling option (RFC1323) for windows up to 230 bytes.

connect • communicate • collaborate

WINDOW SIZE AND PERFORMANCE

Window size is the most important factor influencing throughput in high-
performance networks.

Degradation can occur if the Window size is too big or too small

Window size too small:

Unused capacity.

Window size too big:

Can monopolise system memory in popular web or file servers.

– May run out of buffer space to open new connections.

– May starve other processes of access to fast memory.

– Not so relevant with auto-tuning

Can result in uneven bursts of traffic.

– When large bursts of traffic combine with a network bottleneck, the result can
be buffer overflows with resultant packet loss and retransmission overheads.

connect • communicate • collaborate

TUNING A HOST FOR MAXIMUM

TRANSMISSION RATES (1)

Tuning techniques and options vary between operating systems.

However, you may be able to (also see PERT Knowledge Base):
Change the TCP buffer size

Most systems today implement auto-tuning (dynamically adapt TCP
send/receive buffers)

Microsoft: Windows Vista/7/8 (receive-side only, send-side tuning on
“server” editions)

Linux 2.4 (send-side only)

Linux 2.6 (send/receive)

FreeBSD 7 and later (send/receive)

Mac OSX 10.5 and later (send/receive)

connect • communicate • collaborate

TUNING A HOST FOR MAXIMUM

TRANSMISSION RATES (2)

Auto-tuning on Linux
Main control-knob for send/receive autotuning
echo “<min> <default> <max>” > /proc/sys/net/ipv4/tcp_wmem
echo “<min> <default> <max>” > /proc/sys/net/ipv4/tcp_wmem

Buffer starts at <default>, can grow up to <max>

Sender increases buffer with growth of cwnd

Receiver estimates throughput by measuring received data per RTT, adjusts
buffer/advertised window accordingly

connect • communicate • collaborate

TUNING A HOST FOR MAXIMUM
TRANSMISSION RATES (3)

Use Large Send Offload (LSO) to reduce load on CPU

Increases the amount of data that can be sent by the CPU to the network adapter for
transmission.

Also known as TCP Segmentation Offload and TCP Multidata Transmit.

Disadvantages

– Can affect packet timing and cause burstiness

– “Protocol Fossilization”: part of transport layer protocol implemented in
hardware, makes it hard to add features (IPSec, TCP MD5, …) or different
transport protocol (e.g. SCTP)

– Additional complexity, bugs

– Multi-core CPUs make this optimization less relevant

connect • communicate • collaborate

TUNING A HOST FOR MAXIMUM
TRANSMISSION RATES (4)

Interrupt Coalescence

– Increases amount of incoming data that can be buffered on the network adapter
before it is sent to the CPU.

– Decreases the number of interrupts that the CPU has to deal with.

– Less relevant for multi-core CPUs that allow binding a connection to a core

Checksum Offload

– Network adapter verifies/generates checksums

TCP Offload Engine (TOE)

– Reduces load on CPU.

– Moves all TCP processing onto the network adapter.

– Same disadvantages as LSO (even worse)

connect • communicate • collaborate

TUNING A HOST FOR MAXIMUM
TRANSMISSION RATES (5)

“Swing of the pendulum effect”
Network performance increases (e.g. 100Mbps → 1Gbps)

CPU cannot saturate network

People implement hardware assistance (LSO, TOE, …)

CPU performance increases

Hardware assistance obsolete

Network performance increases (e.g. 1Gbps → 10Gbps)

…

Current wisdom: turn these features off, except maybe checksum
offloading.

connect • communicate • collaborate

THE GOALS OF EARLY TCP (1)

Basic TCP functionality has changed little since RFC 793, published
in 1981. The main goals of TCP were defined as:

Reliability:
Each octet is given a sequence number. The receiver uses these to:

– Eliminate duplicate octets.

– Re-order out-of-sequence octets.

Each segment must be acknowledged by the receiver:
– Cumulative ACKs: acknowledges all data up to this point (implies that loss on

ACK-path is less critical).

– If acknowledgement does not arrive before a timeout, the sender re-transmits
the segment. Requires estimation of RTT.

Each segment is given a checksum:
– Receiver uses this to spot corrupted or damaged segments.

connect • communicate • collaborate

THE GOALS OF EARLY TCP (2)

The main goals of TCP according to RFC 793 (continued):
Flow Control.

– Receiver governs amount of data sent by sender through mechanism of window
size.

Multiplexing.
– Use of ports makes many simultaneous connections possible from one server.

Connections.
– Established between a pair of sockets and the TCP implementation on each

side.

connect • communicate • collaborate

‘CONGESTION COLLAPSE’ IN
THE LATE 1980s

By the late 1980s computer networks were experiencing ‘explosive
growth’, but TCP could not cope with the increasing traffic.

Often internet gateways would drop 10% of incoming packets due
to local buffer overflows.

From late 1986 onwards, the internet experienced a series of
‘congestion collapses’.

Van Jacobson and others identified aggressive sending strategy of
early TCP as the source of the problem.

connect • communicate • collaborate

WHY DID CONGESTION
COLLAPSE OCCUR? (1)

Original TCP: Window size was equal to the lesser of:

Sender’s static buffer size.

Receiver’s advertised window size.

Window size was determined by capacity at both ends of the link, but it
did not allow for bottlenecks between them. Neither did the window size
take network congestion into account. The results:

On connection start-up, bottleneck gateways could be overwhelmed
with packets.

Buffers overflowed.

Packets were lost and had to be retransmitted.

This created a vicious circle.

connect • communicate • collaborate

WHY DID CONGESTION COLLAPSE
OCCUR? (2)

Early TCPs started by sending an entire window in a burst, overloading
router queues immediately. Ethernet connected to a 230Kbps link with
buffer (15kiB) < window (16kiB):

Van Jacobson, “Congestion Avoidance and Control”, ACM SIGCOMM Computer Communication Review, 1988, Volume 18, Issue 4,
pp. 314-329.

connect • communicate • collaborate

WHY DID CONGESTION COLLAPSE
OCCUR? (3)

connect • communicate • collaborate

INTRODUCTION OF CONGESTION
CONTROLS

In the late 1980s, TCP evolved to prevent congestion collapse.
TCP “Tahoe” introduced new flow control mechanisms and TCP
“Reno” refined them:

The Congestion Window
– Makes window size dependent upon a connection’s available bandwidth.

Slow Start and Congestion Avoidance
– Increase window size to probe a connection for available bandwidth.

Congestion Control Mechanisms
– Decrease the TCP transmission window when congestion is detected.

connect • communicate • collaborate

AVOIDING CONGESTION:
THE CONGESTION WINDOW

The transmission window size was made equal to the lesser of:

The sender’s buffer size.

The receiver’s advertised window size.

The Congestion Window.

TCP implementations could dynamically resize the congestion window
to:

Probe a connection for available bandwidth using ‘slow start’.

Slowdown throughput growth before collapse occurred using
‘congestion avoidance’.

Reduce the rate at which data was sent when congestion was
detected.

connect • communicate • collaborate

Slow start aims to avoid overwhelming bottlenecks with packets on
start-up. It starts small and increases the rate of flow
exponentially.

On start-up, the congestion window is set to the Maximum
Segment Size (MSS) of the connection.

On each ACK, congestion window is increased by 1 MSS
Doubles congestion window every RTT.

Congestion window continues to increase at same rate until:
The receiver’s advertised window size is reached, or

The senders buffer size is reached, or

Congestion is detected in the connection, or

There is no traffic waiting to take advantage of increased window, or

The slow-start threshold is crossed.

SLOW START

connect • communicate • collaborate

CONGESTION COLLAPSE FIXED

Same transmission as on slide 21 but with slow start (window-
limited transfer, self-clocking)

connect • communicate • collaborate

DIGRESSION: SELF-CLOCKING

Sender has a window in flight. ACK spacing dictated by bottleneck
bandwidth → window moves at the same clock.

connect • communicate • collaborate

TWEAKING THE INITIAL
CONGESTION WINDOW (1)

Time taken up by slow start to increase congestion window from 1 to
BDP with respect to the path MTU (in units of RTT)

Initial congestion window of N instead of 1

BDP=MTU 2T

T= log2 (BDP /MTU)

BDP=MTU∗N∗2T̄

T̄ =T−log 2N

connect • communicate • collaborate

Advantages

Saves round trips for small transaction (a few KB)

Reduces time to ramp up to large BDP (not very relevant in
practice)

Disadvantages

Initial burst can overflow buffers (if buffers are small or when there
is congestion)

TWEAKING THE INITIAL
CONGESTION WINDOW (2)

connect • communicate • collaborate

TWEAKING THE INITIAL
CONGESTION WINDOW (3)

Original TCP spec: initial window = one segment

RFC 2414, 1998: increase initial window from one segment to
about 4KB (3 segments @ 1500 byte MTU). This is optional but is
probably part of all current TCP stacks.

 RFC 3390, 2002 added some more analysis and results of
experiments

No change since then. 2009: Google experiments with 10
segments, claims that this causes no harm
http://code.google.com/speed/articles/tcp_initcwnd_paper.pdf

– Reduces user-visible latency by 10% (fewer round trips for
small transfers)

– No congestion observed
– http://tools.ietf.org/html/draft-ietf-tcpm-initcwnd
– Used in practice (e.g. Linux since 2.6.39)

http://code.google.com/speed/articles/tcp_initcwnd_paper.pdf
http://tools.ietf.org/html/draft-ietf-tcpm-initcwnd

connect • communicate • collaborate

CONGESTION AVOIDANCE AND
THE SLOW START THRESHOLD

The slow-start threshold (ssthresh) is a TCP variable that is used
to slow exponential congestion-window growth before congestion
occurs (set to “infinity” on session start).

ssthresh is TCP's memory of recently experienced congestion.
Some systems cache ssthresh for a destination and use it as initial
sshtresh for a new connection to the same destination.

When the congestion window exceeds ssthresh, TCP’s strategy
changes from ‘slow start’ to ‘congestion avoidance’.

During congestion avoidance, the congestion window is still
increased in response to each ACK, but only in a slower, linear
fashion (additive increase).

– cwnd = cwnd + (1/cwnd)

– Results in an increase of 1 MSS per RTT (cwnd ACKs, each adding 1/cwnd).

connect • communicate • collaborate

THE SLOW START THRESHOLD AND
CONGESTION AVOIDANCE: AN EXAMPLE

Congestion

Window

Size

Time

Slow start threshold reached.

Congestion avoidance begins.

Slow start

begins

Exponential growth

during ‘slow start’

Linear growth

During congestion avoidance

connect • communicate • collaborate

DEALING WITH CONGESTION:
PRINCIPLES

When congestion is detected, the sender should respond by reducing its
share of the available bandwidth.

This means that it must reduce its rate of packet transmission.

In practical terms, this means that it must reduce its transmission
window size.

Heavy congestion is deduced if a Retransmission Time-Out (RTO)
occurs.

In other words, if a packet is not acknowledged before a timeout
derived from actual RTTs, it is deemed lost due to congestion.

Lighter congestion is deduced if three “duplicate ACKs” are received.

connect • communicate • collaborate

DUPLICATE ACKNOWLEDGEMENTS

Hole in the sequence umber space: receiver gets a segment but is
missing at least one segment up to that point

 Receiver cannot acknowledge the new packet (ACKs are cumulative)

Instead, sends an ACK for the highest sequence number up to which it
has received all segments

Additional segments will trigger the same “duplicate” ACK until the
missing segment arrives

A duplicate ACK tells the receiver three things

– A packet has likely been lost (false positive in case of reordering)

– Other packets are still getting through

– A packet has left the network

connect • communicate • collaborate

TCP’S RESPONSE TO CONGESTION

TCP’s response depends upon whether heavy or light congestion
was detected.

Heavy congestion (an ACK times out):
Reduce cwnd to initial value.

Reduce ssthresh to half the flight-size when the ACK timed out
(multiplicative decrease → exponential backoff, no less will do).

Enter slow start mode.

Light Congestion (three duplicate ACKs are received):
Perform fast retransmit and fast recovery. Goal is to

– Re-send lost packet.

– Reduce the sending rate to half of that when the loss was detected.

– Keep packets flowing until the re-transmitted packet is acknowledged

connect • communicate • collaborate

FAST RETRANSMIT AND
FAST RECOVERY

Fast Retransmit:
Retransmit lost segment immediately (do not wait for RTO). Will take
one RTT to be acknowledged.

Fast Recovery, keep pipe from draining:
Reduce ssthresh to half the flight-size.

Duplicate ACKs don't move the window. Inflate congestion window
artificially to keep packets flowing:

– Set congestion window to ssthresh + 3 MSS (initial 3 duplicate ACKs).

– Increase congestion window by 1 MSS for each extra duplicate ACK received.

On acknowledgement of retransmitted segment, reduce congestion
window to value of ssthresh (reverses inflation during fast recovery)
and enter congestion avoidance mode.

connect • communicate • collaborate

THE WINDOW CLOSES AGGRESSIVELY
(IN RESPONSE TO RETRANSMISSION TIMEOUT)

Slow start threshold

Congestion detected

through timeout

Slow start

begins

Slow start threshold

set to half the

flight size at timeout

Congestion detected through timeoutTime

Congestion

Window

Size

connect • communicate • collaborate

THE WINDOW CLOSES MODERATELY
(IN RESPONSE TO DUPLICATE ACKS)

Slow start threshold

Congestion detected

through 3 duplicate ACKs

Slow start

begins

ssthresh set to half flight-size;

congestion window set to ssthresh + 3 MSS;

lost segment re-transmitted (fast retransmit)

Congestion window opens by 1 MSS for each

Extra duplicate ACK received

Congestion

Window

Size

Time

ACK received for

Re-transmitted

Segment

cwnd deflated

to value of

ssthresh.

Fast recovery

ends.

Congestion

avoidance

begins

connect • communicate • collaborate

PROBLEMS WITH TCP
CONGESTION CONTROL

Fast recovery does not handle multiple packet loss well.

Assumes that a single packet was lost per RTT, due to cumulative
nature of ACKs.

If two or more packets are lost at the same time, the losses are dealt
with in a ‘serial’ fashion.

E.g. Fast recovery reduces the cwnd to half the flight size and then repeats this
operation for each lost packet.

Can lead to ‘ACK starvation’ and deadlock (recovery through timeout).

Modern TCPs (derived from “New Reno”) use
Modified fast recovery algorithm using “partial ACKs”.

Selective acknowledgements (SACK, RFC2018).

connect • communicate • collaborate

SIMPLE MODEL FOR TCP
THROUGHPUT (1)

Path with constant RTT and average loss rate p. Assume
Perfectly periodic loss events, i.e. sequences of 1/p packets (of size
MSS) followed by one lost packet.

Every packet is acknowledged, i.e. window increases by 1 per RTT,
cycle lasts W/2 RTT seconds.

Throughput = Data per cycle / cycle time

Data per cycle (units of MSS): 3
2 (W2)

2

=
1
p

T=
MSS
p

1
W
2
RTT

=
MSS
RTT

2
pW

=
MSS
RTT √ 3

2p

connect • communicate • collaborate

SIMPLE MODEL FOR TCP
THROUGHPUT (2)

Observations:

Lossy TCP behaves like window-limited lossless TCP

The effective window as a function of average packet loss in units
of the MSS is called the “response function” of TCP

Short RTT can tolerate more loss than large RTT

Helps to avoid a common pitfall! Consider this case:

User reports low throughput on a large RTT path

NOC on one end performs throughput test on a short segment of
the path, finds much higher throughput

NOC concludes that loss can't be on their part of the path

What's wrong with that?

T=
W eff

RTT
;W eff =MSS √ 3

2p

connect • communicate • collaborate

SIMPLE MODEL FOR TCP
THROUGHPUT (3)

Plot throughput as a function of RTT. If it looks like this (arbitrary
scale)

it is likely that the transfer is limited by loss and the loss is probably
located on the segment common to all measurements.

connect • communicate • collaborate

TROUBLE WITH THE ELEPHANTS (1)

Problem with ‘traditional TCP’ on Long Fat Networks (LFNs):

BDP is high. Therefore:
Optimal congestion window is big.

Packet loss exponentially reduces congestion window.

Recovery from congestion takes too long, because of large
congestion window and high round-trip time.

Given realistic rates of packet loss, traditional TCP cannot
maintain an optimal-sized average congestion window in an LFN.
Therefore:

Throughput is sub-optimal.

connect • communicate • collaborate

TROUBLE WITH THE ELEPHANTS (2)

An example:

Consider a path of 10 Gbps at 100 ms RTT.
BDP = 125 MiB or 83333 1500 byte packets.

It takes log(83333)/log(2) = 17 RTTs (1.7 seconds) to inflate
congestion window to equal BDP during slow-start (initial cwnd =
1, ACK each packet).

– Time is not a big issue, but increasing the window in huge
chunks may be one

It takes 41666 RTTs (4166 seconds) to inflate congestion window
from half maximum size back to maximum size during congestion
avoidance.

With a bit error rate of 10-13, there will be a corrupt packet per 1000
seconds on average → unlikely to ever reach maximum window.

connect • communicate • collaborate

HIGH-SPEED VARIANTS OF TCP

Possible improvements for congestion avoidance algorithm

Smaller reduction during multiplicative decrease: W → (1-β)W

Regular TCP: β = 0.5

High-Speed: β < 0.5

Larger increase of cwnd per RTT: 1 → α (> 1)

Non-linear increase during congestion avoidance
– Recall regular TCP

• Response function

• Linear increase of window by α per RTT from (1-β)W
max

 to

W
max

, takes T RTTs

W (t) = W max−α (T−t)

T =
β
α
W max

W (p) ∼ p
−

1
2

connect • communicate • collaborate

HIGH-SPEED TCP: CUBIC (1)

Generalization

Regular TCP: α = 1, β = 0.5, γ = 1

CUBIC: α = 0.4, β = 0.2, γ = 3

W (t) ¿ W max−α (T−t)γ

T ¿ (βα W max)
1
γ

W (p) ~ p
−
γ
γ+1

connect • communicate • collaborate

HIGH-SPEED TCP: CUBIC (2)

 Response function is still a power law

CUBIC morphs into standard TCP for low BDP paths

For high BDP paths, increase of cwnd during congestion avoidance
is sped up

The previous maximum cwnd is at the saddle point of the cubic
growth function

Used per default in Linux since 2.6.19

connect • communicate • collaborate

HIGH-SPEED TCP: CUBIC (3)

 Previous example (10 Gbps, 100ms RTT)

of RTTs to grow window from 0.8 W
max

 to W
max

Standard TCP (½ W
max

 → W
max

):

T=(W max

2)
1
3=35

T=
W max

2
=41666

connect • communicate • collaborate

EXPLICIT CONGESTION CONTROL
PROTOCOLS (1)

‘Traditional TCP’ congestion control mechanisms rely on
information gathered by the sender and the receiver only.

I.e. they use information from the two ends of the path to deduce that
the middle is congested.

By contrast, explicit congestion control protocols rely on routers in
‘the middle’ of the path to supply information.

Routers return information (sometimes via the receiver) about:

– Congestion that has been experienced, or

– The optimal ‘share’ of capacity that should be allocated to the path.

This information is often held within packet-headers.

In response, the sender re-sizes its congestion window.

connect • communicate • collaborate

EXPLICIT CONGESTION CONTROL
PROTOCOLS (2)

Advantage

Congestion notification is usually quicker and more sensitive.

Disadvantage

Routers do more work and need to support Explicit Congestion
Control Protocols; often they do not.

Examples of Explicit Congestion Control Protocols:

Source Quench (now obsolete).

Explicit Congestion Notification (ECN)

– More information about each of these is available in the PERT Knowledge
Base.

connect • communicate • collaborate

NETWORK TUNING FOR BETTER
CONGESTION CONTROL (1)

Router buffers
When incoming traffic exceeds outbound capacity, routers buffer
packets in a queue.

When the buffer is full, newly arriving packets are simply dropped.

Whole bursts of packets can be dropped.
– Can lead to synchronised traffic bursts and lower throughput.

Packets can remain in buffers for a long period.
– Leads to increased one-way delay and round-trip times.

In response to these issues, router buffers can be actively
managed.

connect • communicate • collaborate

NETWORK TUNING FOR BETTER
CONGESTION CONTROL (2)

Active Queue Management (AQM)
Network nodes send congestion signals to avoid buffers filling (ECN
approach).
Most common form of Active Queue Management is Random Early
Detection (RED).

– RED is supported by many routers, but is not active by default.
– Needs to be tuned.
– Samples queue-size over time.
– Can drop packets to keep queue-size small.
– Short queue keeps one-way delay and round-trip time low.
– Also helps to avoid synchronisation effects and related throughput degradation.

 Variants exist, e.g. BLUE, which determines optimal queue length
dynamically

connect • communicate • collaborate

NETWORK TUNING FOR BETTER
CONGESTION CONTROL (3)

Sizing of Network Buffers
Approach 1: Traditional Wisdom

– Suggests that network node should be able to buffer an end-to-end round-trip
time’s worth of line-rate traffic.

– This is to accommodate bursts.

Approach 2: Suggested by recent research
– Suggests that much smaller buffers are sufficient when there is a high degree

of multiplexing of TCP streams.

“Bufferbloat”: excessive buffers in network equipment can cause
huge delays (up to minutes have been observed in the wild)

Hosts

CPE devices

Telco networks (“we never drop a packet, and we're proud of it”)

Messes up TCP's control loop

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

